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Overview

• Scikit-learn

• Introduction to topic modelling

• Working with text data

• Topic modelling algorithms

• Non-negative Matrix Factorisation (NMF)

• Topic modelling with NMF in Scikit-learn

• Parameter selection for NMF

• Practical issues
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Code, data, and slides:

https://github.com/derekgreene/topic-model-tutorial

https://github.com/derekgreene/topic-model-tutorial


Scikit-learn
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http://scikit-learn.org/stable

conda install scikit-learn

pip install scikit-learn

http://scikit-learn.org/stable


Introduction to Topic Modelling

Topic modelling aims to automatically discover the hidden thematic 
structure in a large corpus of text documents.
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LeBron James says President Trump 'trying to divide 
through sport'

Basketball star LeBron James has praised the American football players who 
have protested against Donald Trump, and accused the US president of "using 
sports to try and divide us".


Trump said that NFL players who fail to stand during the national anthem should 
be sacked or suspended.


James praised the players' unity, and said: "The people run this country."


James, who plays for the Cleveland Cavaliers and has won three NBA 
championships, campaigned for Hillary Clinton, Trump's rival, during the 2016 
presidential election campaign.

Topics Documents

Topic 1

Basketball 

LeBron 
NBA 

...

Topic 3

Trump 

President 
Clinton 

...

Topic 2

NFL 

Football 
American 

...

A document is composed of terms related to one or more topics.



Introduction to Topic Modelling

• Topic modelling is an unsupervised text mining approach.

• Input: A corpus of unstructured text documents (e.g. news 

articles, tweets, speeches etc). No prior annotation or training 
set is typically required. 
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• Output: A set of k topics, each of which is represented by:

1. A descriptor, based on the top-ranked terms for the topic.

2. Associations for documents relative to the topic.

Input Output

Data 
Pre-

processing

Topic 
Modelling 
Algorithm

Topic 1

Topic 2

Topic k



Introduction to Topic Modelling
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Top Terms for Topic 1 Top Terms for Topic 2

Top Terms for Topic 3 Top Terms for Topic 4



Introduction to Topic Modelling

In the output of topic modelling, a single document can potentially 
be associated with multiple topics…

Politics or Health? Business or Sport?



Application: News Media
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We can use topic modelling 
to uncover the dominant 
stories and subjects in a 
corpus of news articles.

Rank Term

1 eu
2 brexit

3 uk

4 britain
5 referendum

Article Headline Weight

Archbishop accuses Farage of racism and 'accentuating fear' 0.20
Cameron names referendum date as Gove declares for Brexit 0.20

Cameron: EU referendum is a 'once in a generation' decision 0.18

Remain camp will win EU referendum by a 'substantial margin' 0.18
EU referendum: Cameron claims leaving EU could make cutting... 0.18

Topic 1

Rank Term
1 trump

2 clinton

3 republican
4 donald

5 campaign

Topic 2

Document Title Weight
Donald Trump: money raised by Hillary Clinton is 'blood money' 0.27

Second US presidential debate – as it happened 0.27

Donald Trump hits delegate count needed for Republican nomination 0.26
Trump campaign reportedly vetting Christie, Gingrich as potential... 0.26

Trump: 'Had I been president, Capt Khan would be alive today' 0.26
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Application: Social Media

Topic modelling applied to 4,170,382 tweets from 1,200 prominent 
Twitter accounts, posted over 12 months. Topics can be identified 
based on either individual tweets, or at the user profile level.
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Rank Term
1 space        
2 #yearinspace  
3 pluto        
4 earth        
5 nasa         
6 mars         
7 mission      
8 launch       
9 #journeytomars
10 science      

Rank Term
1 #health  
2 cancer  
3 study   
4 risk    
5 patients
6 care    
7 diabetes
8 #zika    
9 drug    
10 disease 

Rank Term
1 apple 
2 iphone
3 #ios   
4 ipad  
5 mac   
6 app   
7 watch 
8 apps  
9 os    
10 tv    

Topic 1 Topic 2 Topic 3



Application: Political Speeches

Analysis of 400k European Parliament speeches from 1999-2014 
to uncover agenda and priorities of MEPs (Greene & Cross, 2017).
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Other Applications

Topic models have also been applied to discover the underlying 
patterns across a range of different non-textual datasets.
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LEGO colour themes as topic models

https://nateaff.com/2017/09/11/lego-topic-models

https://nateaff.com/2017/09/11/lego-topic-models


Working with Text Data



Working with Text Data

Most text data arrives in an unstructured form without any pre-
defined organisation or format, beyond natural language. The 
vocabulary, formatting, and quality of the text can vary significantly.
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Text Preprocessing

• Documents are textual, not numeric. The first step in analysing 
unstructured documents is tokenisation: split raw text into 
individual tokens, each corresponding to a single term.


• For English we typically split a text document based on 
whitespace. Punctuation symbols are often used to split too:
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text = "Apple reveals new iPhone model"
text.split()

['Apple', 'reveals', 'new', 'iPhone', 'model']

• Splitting by whitespace will not work for some languages:   
e.g. Chinese, Japanese, Korean; German compound nouns.


• For some types of text content,  
certain characters can have  
a special significance:



Bag-of-Words Representation

• How can we go from tokens to numeric features?

• Bag-of-Words Model: Each document is represented by a vector in 

a m-dimensional coordinate space, where m is number of unique 
terms across all documents (the corpus vocabulary).
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Document 1:

Forecasts cut as IMF issues 
warning

Document 2:

IMF and WBG meet to 
discuss economy

Document 3:

WBG issues 2016 growth 
warning

Example: 
When we tokenise our corpus of 3 
documents, we have a vocabulary of 
14 distinct terms

{'2016', 'Forecasts', 'IMF', 'WBG', 'and', 
'as', 'cut', 'discuss', 'economy', 'growth', 
'issues', 'meet', 'to', 'warning'}

vocab = set()
for doc in corpus:
     tokens = tokenize(doc)
     for tok in tokens:
          vocab.add(tok)
print(vocab)



0 1 1 0 0 1 1 0 0 0 1 0 0 1

Bag-of-Words Representation

• Each document can be represented as a term vector, with an entry 
indicating the number of time a term appears in the document:
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Document 1:

Forecasts cut as IMF issues 
warning
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• By transforming all documents in this way, and stacking them in 
rows, we create a full document-term matrix:

Document 2:

IMF and WBG meet to 
discuss economy

Document 3:

2016: WBG issues 2016 
growth warning

3 Documents x 14 Terms



Bag-of-Words in Scikit-learn

• Scikit-learn includes functionality to easily transform a collection of 
strings containing documents into a document-term matrix.
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from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
A = vectorizer.fit_transform(documents)

Our input, documents, is a list of strings. Each string is a separate document.

Our output, A, is a sparse NumPy 2D array with rows corresponding to documents and 
columns corresponding to terms. 

• Once the matrix has been created, we can access the list of all 
terms and an associated dictionary (vocabulary_) which maps 
each unique term to a corresponding column in the matrix.

terms = vectorizer.get_feature_names()
len(terms)

3288

Which column corresponds to a term?

vocab = vectorizer.vocabulary_
vocab["world"]

3246

How many terms in the vocabulary?



Further Text Preprocessing

• The number of terms used to represent documents is often 
reduced by applying a number of simple preprocessing techniques 
before building a document-term matrix:

- Minimum term length: Exclude terms of length < 2

- Case conversion: Converting all terms to lowercase.

- Stop-word filtering: Remove terms that appear on a pre-defined 

filter list of terms that are highly frequent and do not convey 
useful information (e.g. and, the, while)


- Minimum frequency filtering: Remove all terms that appear in 
very few documents.


- Maximum frequency filtering: Remove all terms that appear in a 
very large number of documents.


- Stemming: Process by which endings are removed from terms 
in order to remove things like tense or plurals: 
e.g.  compute, computing, computer = comput

18



Further Text Preprocessing

• Further preprocessing steps can be applied directly using the 
CountVectorizer class by passing appropriate parameters - e.g.:
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from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(  

    stop_words=custom_list, 
    min_df=20, 

    max_df=1000,  

    lowercase=False,  
    ngram_range=2)

A = vectorizer.fit_transform(documents)

Parameter Explanation

stop_words=custom_list Pass in a custom list containing terms to filter.

min_df=20 Filter those terms that appear in < 20 documents.

max_df=1000 Filter those terms that appear in > 1000 documents.

lowercase=False Do not convert text to lowercase. Default is True.

ngram_range=2 Include phrases of length 2, instead of just single words.



Term Weighting

• As well as including or excluding terms, we can improve the 
usefulness of the document-term matrix by giving higher weights 
to more "important" terms.


• TF-IDF: Common approach for weighting the score for a term in a 
document. Consists of two parts:

- Term Frequency (TF): Number of times a given term appears in a 

single document.

- Inverse Document Frequency (IDF): Function of total number of 

distinct documents containing a term. Effect is to penalise 
common terms that appear in almost every document. 
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w(t,D) = tf(t, d)⇥ (log( n
df(t) ) + 1) n = total number 

of documents

w(cat, D) = 3⇥ (log( 100050 ) + 1) = 11.987

• Example: the term "cat" appears in a given document 3 times and 
appears 50 times overall in a corpus of 1000 documents:



Term Weighting in Scikit-learn

• A similar vectorisation approach can be used in Scikit-learn to 
produce a TF-IDF normalised document-term matrix:
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from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()

A = vectorizer.fit_transform(documents)

The output, A, is a sparse NumPy array where the entries are all TF-IDF normalised.

• Again we can perform additional preprocessing steps by passing 
the appropriate parameter values to TfidfVectorizer:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(  

    stop_words=custom_list, 

    min_df=20, 
    max_df=1000,  

    lowercase=False,  
    ngram_range=2)

A = vectorizer.fit_transform(documents)



Text Preprocessing Pipeline

• Typical text preprocessing steps for a document corpus...
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• Note: Stemming is not included in scikit-learn. See NLTK package.

• Once we have our document-term matrix, we are ready to apply 

machine learning algorithms to explore the data.

Tokenisation

Corpus of Raw 
Documents

Document 
Term Matrix

Case 

Conversion

Min/Max Term 
Filtering

Filter Short 
Terms

Filter Stop- 
Words

Stemming

Term 
WeightingVectorisation



Topic Modelling



Topic Modelling Algorithms

Various different methods for topic modelling have been proposed. 
Two general approaches are popular:

1. Probabilistic approaches 

- View each document as a mixture of a small number of topics.

- Words and documents get probability scores for each topic. 

- e.g. Latent Dirichlet Allocation (LDA) (Blei et al, 2003).
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2. Matrix factorisation approaches 
- Apply methods from linear algebra to decompose a single 

matrix (e.g. document-term matrix) into a set of smaller 
matrices. 


- For text data, we can interpret these as a topic model.

- e.g. Non-negative Matrix Factorisation (NMF)  

(Lee & Seung, 1999).



Non-negative Matrix Factorisation

• Non-negative Matrix Factorisation (NMF): Family of linear algebra 
algorithms for identifying the latent structure in data represented 
as a non-negative matrix (Lee & Seung, 1999).


• NMF can be applied for topic modeling, where the input is a 
document-term matrix, typically TF-IDF normalised.
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Input Matrix  
(documents x terms)

• Input: Document-term matrix A; Number of topics k.

• Output: Two k-dimensional factors W and H approximating A.

An

m

Factor W  
(documents x topics)

NMF Wn

k

Factor H  
(topics x terms)

H

m

k·



Example: NMF Topic Modelling

Apply NMF topic modelling to a small document-term matrix A  
representing a corpus of 6 documents, to generate k=3 topics…
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Example: NMF Topic Modelling
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document 1 

document 2 

document 3 

document 4 

document 5 

document 6

Topic 1        Topic 2         Topic 3

0.0 

0.0 

0.7 

0.7 

0.0 

0.0

1.0 

0.0 

0.0 

0.0 

0.0 

1.0

1.0 

1.0 

0.0 

0.0 

1.0 

1.0

Factor W  
Weights for 6 documents 

relative to 3 topics

6 Rows x 3 Columns

research 

school 

education 

disease 

patient 

health 

budget 

finance 

banking 

bonds

Topic 1         Topic 2         Topic 3

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.3 

0.6 

0.7 

0.3

0.0 

0.1 

0.0 

0.6 

0.7 

1.0 

0.1 

0.0 

0.0 

0.0

1.0 

0.1 

1.0 

0.0 

0.0 

0.0  

0.2 

0.0 

0.0 

0.0

Factor H 
Weights for 10 terms  
relative to 3 topics

10 Rows x 3 Columns



Applying NMF in Scikit-learn

• Scikit-learn includes a fast implementation of NMF. 

• By default, the values in factors W and H are given random initial 

values. The key required input parameter is the number of topics 
(components) k:
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from sklearn import decomposition

model = decomposition.NMF(n_components=k) 
W = model.fit_transform( A )

H = model.components_

Apply NMF to document-term 
matrix A, extract the resulting 

factors W and H

• When using random initialisation, the results can be different 
every time NMF is applied to the same data. More reliable results 
can be obtained if you initialise with SVD (Belford et al, 2018).

from sklearn import decomposition

model = decomposition.NMF(n_components=k, init="nndsvd") 
W = model.fit_transform( A )

H = model.components_



Applying NMF in Scikit-learn

• The H factor contains term weights relative to each of the k 
topics. Each row corresponds to a topic, and each column 
corresponds to a unique term in the corpus vocabulary.


• Sorting the values in each row gives us a ranking of terms - the 
descriptor of each topic.
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import numpy as np
top_indices = np.argsort( H[topic_index,:] )[::-1]

top_terms = []
for term_index in top_indices[0:top]:
    top_terms.append( terms[term_index] )

For each topic, sort the row  
indices in reverse, then get  
the terms for the top indices.

Topic 01: eu, brexit, uk, britain, referendum, leave, vote, european, cameron, labour
Topic 02: trump, clinton, republican, donald, campaign, president, hillary, cruz, sanders, election
Topic 03: film, films, movie, star, hollywood, director, actor, story, drama, women
Topic 04: league, season, leicester, goal, premier, united, city, liverpool, game, ball
Topic 05: bank, banks, banking, financial, rbs, customers, shares, deutsche, barclays, lloyds
Topic 06: health, nhs, care, patients, mental, doctors, hospital, people, services, junior
Topic 07: album, music, band, song, pop, songs, rock, love, sound, bowie
Topic 08: internet, facebook, online, people, twitter, media, users, google, company, amazon

Repeat for all topics to get the full set of descriptors:



Applying NMF in Scikit-learn

• The W factor contains document membership weights across 
the k topics. Each row corresponds to a different document, and 
each column corresponds to a topic.


• Sorting the values gives us a ranking of the most relevant 
documents for each topic.
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top_indices = np.argsort( W[:,topic_index] )[::-1]
top_documents = []

for doc_index in top_indices[0:top]:
    top_documents.append( documents[doc_index] )

For each topic, sort column  
indices in reverse, then get  
the documents for the top  
indices.

01. Donald Trump: money raised by Hillary Clinton is 'blood money'
02. Second US presidential debate – as it happened
03. Trump campaign reportedly vetting Christie, Gingrich as potential running mates
04. Donald Trump hits delegate count needed for Republican nomination
05. Trump: 'Had I been president, Capt Khan would be alive today'
06. Clinton seizes on Trump tweets for day of campaigning in Florida
07. Melania Trump defends husband's 'boy talk' in CNN interview 
08. Hillary Clinton: 'I'm sick of the Sanders campaign's lies'
09. Donald Trump at the White House: Obama reports 'excellent conversation'
10. Donald Trump: Hillary Clinton has 'no right to be running'

The top documents for a topic might be summarised using titles or snippets:



Topic 01: eu, brexit, uk, britain, referendum, leave, vote, european, cameron, labour
Topic 02: trump, clinton, republican, donald, campaign, president, hillary, cruz, sanders, election
Topic 03: film, films, movie, star, hollywood, director, actor, story, drama, women
Topic 04: league, season, leicester, goal, premier, united, city, liverpool, game, ball
Topic 05: bank, banks, banking, financial, rbs, customers, shares, deutsche, barclays, lloyds
Topic 06: health, nhs, care, patients, mental, doctors, hospital, people, services, junior
Topic 07: album, music, band, song, pop, songs, rock, love, sound, bowie
Topic 08: internet, facebook, online, people, twitter, media, users, google, company, amazon

Applying NMF in Scikit-learn
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01. The lost albums loved by the stars – from ecstatic gospel to Italian prog
02. How to write a banger for Beyoncé
03. Albums of the year 2016 – our readers respond
04. Why Nirvana's In Bloom is busting out all over
05. Dead Kennedys – 10 of the best
06. Mogwai – 10 of the best
07. Marillion – 10 of the best
08. 'In the Faroe Islands, everyone is in a band' 
09. Pop, rock, rap, whatever: who killed the music genre? 
10. Iggy Pop – 10 of the best



Parameter Selection

• The key parameter selection decision for topic modelling 
involves choosing the number of topics k. 


• Common approach: Measure and compare the topic coherence 
of models generated for different values of k.


• Topic coherence:  The extent to which the top terms 
representing a topic (i.e. the topic descriptor) are semantically 
related, relative to some "background corpus".


• A variety of different measures exist for measuring coherence 
e.g. NPMI, UMass, TC-W2V etc. (O'Callaghan et al, 2015).
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Rank Term
1 port
2 sea

3 maritime
4 naval
5 vessel

Rank Term
1 agriculture
2 farmer

3 beef
4 food
5 dairy

Rank Term
1 farmer
2 naval

3 dairy 

4 maritime
5 nuclear

"High coherence topic" "High coherence topic" "Low coherence topic"



Parameter Selection

• Typical approach for parameter selection: 
1. Apply NMF for a "sensible" range k=[kmin,kmax].
2. Calculate mean coherence of the topics produced for each k, 

relative to the overall corpus or a related background corpus.

3. Select the value of k giving the highest mean coherence.
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Practical Issues

• Preprocessing 
• Stop-word filtering often has a major impact.

• TF-IDF often leads to more useful topics than raw frequencies.


• Initialisation 
• Random initialisation of both NMF and LDA can lead to unstable 

results, particularly for larger datasets.

• Scalability 

• NMF typically more scalable than LDA, but running times can 
increase considerably as number of topics k increases.


• Parameter Selection 
• In many cases, there can be several "good" values of k.

• Choice of coherence measure can produce different results.


• Interpretation 
• Topic models reflect the structure of the data available. Best 

used carefully as an exploratory tool to aid human interpretation.
34



Any Questions?

derek.greene@ucd.ie 

@derekgreene
https://github.com/derekgreene/topic-model-tutorial

mailto:derek.greene@ucd.ie?subject=
https://twitter.com/derekgreene
https://github.com/derekgreene/topic-model-tutorial
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