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Abstract : 

Background : Epistatic Miniarray Profiling(E-MAP) quantifies the net effect 

on growth rate of disrupting pairs of genes, often producing phenotypes that 

may be more (negative epistasis) or less (positive epistasis) severe than the 

phenotype predicted based on single gene disruptions. Epistatic interactions 

are important for understanding cell biology because they define relationships 

between individual genes, and between sets of genes involved in biochemical 

pathways and protein complexes. Each E-MAP screen quantifies the 

interactions between a logically selected subset of genes (e.g. genes whose 

products share a common function). Interactions that occur between genes 

involved in different cellular processes are not as frequently measured, yet 

these interactions are important for providing an overview of cellular 

organization. 

 

Results : We introduce a method for combining overlapping E-MAP screens 

and inferring new interactions between them. We use this method to infer with 

high confidence 2,240 new strongly epistatic interactions and 34,469 weakly 

epistatic or neutral interactions. We show that accuracy of the predicted 

interactions approaches that of replicate experiments and that, like measured 

interactions, they are enriched for features such as shared biochemical 

pathways and knockout phenotypes. We constructed an expanded epistasis 

map for yeast cell protein complexes and show that our new interactions 

increase the evidence for previously proposed inter-complex connections, and 

predict many new links. We validated a number of these in the laboratory, 

including new interactions linking the SWR-C chromatin modifying complex 
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and the nuclear transport apparatus.  

 

Conclusion : Overall, our data support a modular model of yeast cell protein 

network organization and show how prediction methods can considerably 

extend the information that can be extracted from overlapping E-MAP 

screens. 

Background : 

The representation of genetic interactions as networks emerges from 

continuing studies aimed at characterizing the functions of individual genes, 

and anticipates systems biology analyses that focus on dynamic network 

behavior.  An important testing ground for such approaches is the single cell 

eukaryote Saccharomyces cerevisiae, for which a more extensive knowledge 

of individual gene function has been established than for any other organism, 

and for which by far the largest set of gene-gene and protein-protein 

interactions has been assembled[1].  

For instance, the publication of the S. cerevisiae DNA sequence in 1996[2] 

allowed a set of yeast strains to be generated that each contained a disruption 

in a single gene[3]. This, and other strain sets, facilitated a wide range of 

systematic studies aimed at establishing the function of the genes, e.g. [4-8]. 

At the same time, a number of genetic[9, 10] and biochemical methods[11, 

12] allowed the mapping of >30,000 protein-protein interactions[13], that could 

be represented as a large (~4000 node) undirected graph.  Within such 

networks, proteins often form local densely connected network structures that 

correspond to stable physically associating heteropolymeric complexes that 

form in vivo (e.g. the ribosome, the proteasome).  Complexes are an example 
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of groups of proteins that come together to carry out one or more biochemical 

tasks, for example synthesis of new proteins by the ribosome.  Proteins can 

also associate in a more transient manner in pathways to carry out a 

biochemical task, often in sequential rapid enzyme-substrate interactions.  

Because protein functions in the cell operate over different time scales, in 

different locations, and in different biochemical contexts, understanding how 

the cell organizes biological events in terms of protein-protein interaction 

networks has therefore been a major challenge. 

One way to improve our ability to interpret protein networks is to combine 

protein interaction data with additional data sources[14]. In recent years, a 

distinct class of interaction data has been mapped on a large scale in yeast 

cells using Synthetic Genetic Arrays (SGA) technology[15].  Termed 

“synthetic lethal”, these interactions describe the negative (i.e. cell death, or a 

severe growth defect) effects of disrupting two genes, additional (“synthetic”) 

to the effect of disrupting either gene alone[16].  A synthetic lethal interaction 

implies a functional relationship between the interacting genes.  Notably, they 

are enriched for genes known to be involved in the same biochemical 

pathways, including cases where the protein products of the gene are known 

to physically interact and cases where they interact indirectly.  Several 

authors have exploited the distinct characteristics of physical protein 

interaction data and genetic interaction data to shed light on the organization 

of yeast cellular pathways[17].  In 2005, a variant of the SGA method was 

developed that quantified the synthetic effect[18, 19].  Notably, this method 

(Epistatic Miniarray Profiling- or E-Mapping), detects pairwise gene 

disruptions that cause the yeast to grow more slowly (negative epistasis) or 
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more rapidly (positive epistasis) than the rate predicted using the individual 

gene disruptions.  E-MAP data and protein interaction data has recently been 

successfully integrated to give insightful views of cellular organization.  In 

particular, several workers have noted clusters of genetic interactions 

between functional modules[20-22]. Furthermore, these clusters are often 

‘monochromatic’ - predominantly positive or predominantly negative, an 

observation that agrees with a predicted model of epistasis in the yeast 

metabolic network, created using flux balance analysis[23]. 

Although the E-MAP method can in principle be used to quantify the epistasis 

effect for all pairwise combinations in a model organism, in practice 

experimental efforts have to date been carried out on smaller gene sets, 

typically containing 400-800 genes. It has been shown that there is a greater 

density of genetic interactions between genes whose products share the 

same function or location[6, 24]. Based on this principle, the gene sets chosen 

for E-MAP screens are selected in order to maximize the number of epistatic 

interactions identified, and to provide an overview of a broad biological 

process (e.g. RNA processing, chromosome biology). Interactions that occur 

between genes involved in different cellular processes are not as frequently 

measured, yet these interactions are important for providing an overview of 

cellular organization. A considerable number (~30 - 160) of genes overlap 

between different E-MAP sets, raising the possibility that the correlation 

between related genes could be exploited in order to predict epistasis scores 

not directly measured in an individual E-MAP.  Here we develop such an 

approach and use it to predict new epistatic interactions that enhance our 

understanding of the yeast interaction network. 
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To date the majority of methods for predicting genetic interactions have 

focused on synthetic lethal interactions, while the problem of predicting 

quantitative epistatic interactions has received less attention. Techniques for 

the predicting of synthetic lethal interactions have had some success by 

mixing heterogeneous biological data[25, 26]or by exploiting the topology of 

the underlying protein interaction network[21, 27].  Chipman and Singh[28] 

used random walks on diverse biological networks to predict synthetic lethality 

while Qi et al [29] have used graph based methods, using only the graph of 

synthetic lethal interactions.  

Recently two papers have addressed the problem of imputing missing values 

within E-MAPs[30, 31]. These papers both used information from ‘nearest 

neighbors’ to perform the imputation. These neighbor-based techniques 

exploit the similarity between the interaction profiles of different genes to 

predict missing values. The simplest neighbor-based technique is K-nearest 

neighbors, which works as follows: when a gene has a missing value for a 

condition, the K genes with the most similar interaction profiles are identified, 

and their measurements for that interaction are combined using a weighted 

average. We assessed a number of neighbor-based techniques, and found 

that they could be used to effectively impute the missing values within an E-

MAP. Ulitsky et al[31] used a similar approach, but incorporated additional 

genomic features along with neighbor-based information for the imputation. 

The incorporation of these additional features resulted in minor increases in 

imputation accuracy, but the authors noted that the applicability of the method 

was limited to organisms for which such external data were available. 

Additionally, Ulitsky et al used a logistic regression classifier trained on the 
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same features to predict qualitative interactions (positive, neutral, negative) 

between gene pairs.  

Here we develop a prediction approach for E-MAPs and use it to predict new 

epistatic interactions that enhance our understanding of the yeast interaction 

network.  

 

Results: 

A method for predicting quantitative epistatic interactions: 

To address the problem of inferring epistatic interactions between untested 

gene pairs, we propose a constrained nearest neighbor-based approach, 

which exploits the similarity between interaction profiles.  Our goal can be 

most succinctly stated using terms from set theory : given two E-MAPs 

containing overlapping sets of genes (A and B), we wish to predict scores for 

interactions between those genes present in A but not in B (A \ B) and those 

genes present in B but not in A (B \ A) (Fig. 1). We achieve this by identifying 

the nearest neighbors from the genes present in both datasets (A ∩ B). 

Predictions between genes are only made when one of the genes has a 

neighbor that is similar enough, i.e. above a specified similarity threshold 

(using Pearson's correlation as a similarity metric). 

The steps of our algorithm are as follows : 

1) First we calculated a similarity matrix for the genes within each E-MAP. For 

each gene in (A \ B), we calculated its similarity to every gene in (A ∩ B). 

Similarity was defined as the Pearson's correlation coefficient between the 
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interaction profiles of the two genes. The interaction profile for a gene was 

defined as the vector containing the measured interactions between that gene 

and all other genes in the E-MAP. Due to missing interactions the correlation 

is measured over vectors of different sizes – however in 90% of cases there 

are over two hundred data points in common, and the minimum number of 

data points used for our experiments was over seventy genes. Even at this 

minimum number of measurements, the p-value for a correlation of 0.6 is less 

than 10-7. We repeated the process for (B \ A).  

2) Using these similarity matrices we identified the nearest neighbor for each 

gene: the gene with the highest similarity score.  If the neighbor was close 

enough, i.e. above some threshold for similarity, we used it in our imputation. 

3) For each interaction pair (i,j) where i  ∈ (A \ B) and j ∈ (B \ A) we checked if 

i had a close neighbor i', and if j had a close neighbor j'. If (i,j') was present in 

E-MAP B or (i',j) was present in E-MAP A, then we used their value as our 

prediction. If both were available then we used their average as our 

prediction. 

Our method is distinct from existing nearest neighbor imputation methods in 

three ways: 1) we do not attempt to impute missing or erroneous values, 

rather we impute values that were never measured in the original screen; 2) 

we infer the novel interactions by combining pairs of independent but 

overlapping datasets; and 3) we only provide scores for those interactions 

which we can estimate accurately. 

We carried out our procedure for three published E-MAP studies: 

Chromosome Biology[32], Signalling[33] and RNA Processing[34] (henceforth 
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referred to as Chromosome, Signalling, and RNA respectively). Within these 

E-MAPs, the proportion of missing values varies from ~12 - 34% (Table 1). In 

general, only small sets of overlapping genes are shared between each pair 

of E-MAPs (e.g. of the 552 genes in the RNA E-MAP, only 125 are also 

present in the Chromosome E-MAP) yet the correlation between them is high 

(≥ 0.5, see Table 2) allowing inferences based on shared genes to be 

exploited by our method.  In total, we predicted 34,469 putative epistatic 

interactions using these overlapping profiles (based on a correlation threshold 

of 0.6), including 2,240 strongly epistatic interactions (S-score < -2.5 or S-

score > 2 [33]), the class of interactions that are most informative in terms of 

understanding biological function.   

Epistasis scores can be accurately predicted by combining datasets: 

In order to assess the effectiveness of our method, we first performed a 

‘leave-one-out’ style validation procedure using the Chromosome, RNA and 

Signalling datasets. The values for interactions between genes in (A \ B) and 

genes in (A ∩ B) are removed one at a time, and an attempt is made to 

predict them. This is repeated for interactions between genes in (B \ A) and 

genes in (A ∩ B), allowing us to assess the effect of altering the similarity 

threshold on the accuracy of the resulting predictions. We used two measures 

of accuracy: the Pearson's correlation between the predicted and actual 

interactions, and the normalized root mean squared error (NRMSE, see Eqn. 

1). An improvement in accuracy should result in a higher correlation, and a 

lower NRMSE value. 
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NRMSE = 
mean[(ijanswer − ijguess)

2]

variance[ijanswer ]
 

Both measures show a similar trend (Fig. 2). Beyond a minimum similarity 

threshold of ~0.4, there appears to be an almost linear relationship between 

the threshold used and the measured accuracy. Scatter plots constructed to 

compare predicted and experimentally observed epistasis scores show that 

our predictions have similar variance to independent E-MAP experiments at a 

correlation threshold of 0.6. Importantly, at a threshold of 0.6 the number of 

gene pairs misclassified into incorrect epistasis categories (positive classed 

as negative etc.) is very low (~1%). Thus, for our analysis we used a 

threshold of 0.6, preferring a smaller number of more accurate predictions to a 

significantly larger number of less accurate predictions (~35,000 vs 

~160,000). However, all predictions made with a threshold of 0.4 and above 

are given in additional files 1, 2 and 3. 

Predicted epistatic interactions overlap with known interactions and 

pathways : 

It has been widely observed that epistatically interacting gene pairs are more 

likely to share annotated biological properties than randomly selected gene 

pairs[24]. For instance, gene pairs that show strong epistatic interactions are 

likely to be involved in the same biological pathways, and so are likely to 

share Gene Ontology[35] annotations, and to display similar phenotypes. If 

our predicted epistatic interactions are accurate, then we would expect that 

they would be similarly enriched for shared annotations and phenotypes. They 

are also more likely to have been previously identified in genetic interaction 
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screening experiments than randomly selected genes.  Furthermore, 

enrichment for synthetic lethal interactions is likely to be stronger for negative 

than positive interactions, because synthetic lethal screens primarily report on 

negative growth phenotypes.   

We therefore sought to validate our predictions by comparison with a number 

of additional data sets. We selected the strongly epistatic pairs from our set of 

predictions using the thresholds identified in [33] (positive, S-score  > 2.0; and 

negative, S-score < -2.5), and asked whether they are enriched in a variety of 

annotated properties associated with genetically interacting gene pairs 

obtained from the literature including the presence of synthetic lethal (genetic) 

interactions, positive genetic interactions, genes sharing experimental 

phenotypes, and genes sharing database annotations (Gene Ontology).  

Our set of predicted epistatic interactions were indeed enriched for these 

properties for all three E-MAPs (Table 3). 

As expected, pairs of genes predicted to interact both positively and 

negatively tend to share GO Process and SGD Phenotype annotations (Table 

3), confirming that these genes generally operate within similar biological 

processes in the cell. Furthermore, the predicted negatively interacting pairs 

were at least 20-fold more likely to have previously been identified as 

Synthetic Sick/Lethal in published experiments than random pairs, while pairs 

predicted to interact positively were at least 13 times as likely to have 

previously been labeled as such (Table 3). These observations hold for all 

three pairs of E-MAPs considered, and so are likely to be widely applicable. 

Overall, validation using both internal (leave-one-out analysis) and external 
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(comparison with annotated biological features) measures supports the 

assertion that our method successfully generates reliable predictions of 

epistatic relationships of both positive and negative polarity. The ability of our 

method to accurately predict the polarity of an predicted epistatic interaction is 

important, because distinguishing between positive and negative epistasis is 

critical to mapping the high level relationships between biochemical processes 

and protein complexes in the cell. 

Having used both internal and external procedures to ensure that our 

predicted interactions were of high quality, we next validated a number of our 

interactions using a small scale E-MAP in the lab. The results are summarised 

in Table 4, and the measured interactions are available in additional file 4. 

Improved mapping of epistatic relationships among complexes using 

inferred interactions: 

A prime motivation for identifying epistatically interacting genes is to improve 

our understanding of how the various activities of the cell are coordinated.  

Kelley and Ideker[21] combined synthetic lethal interactions with physical 

protein-protein interaction, protein-DNA interaction, and pathway information 

from the KEGG database[36] to construct ‘between pathway’ and ‘within 

pathway’ models for genetic interactions. This work found that ‘between 

pathway' interactions were the more common class, perhaps because 

negative interactions typically reflect redundant behavior that is more likely to 

be found between parallel biochemical pathways than within a single pathway 

focusing on a given biochemical function. Segre and coworkers [23], used a 

flux balance model to predict both positive and negative epistatic interactions 
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between gene pairs, and showed that sets of genes involved in coordinated 

activities tend to show aligned (‘monochromatic’) epistatic polarity.  

Bandyopadhyay and coworkers [20] extended these approaches by 

combining E-MAP data with protein-protein interaction data, to identify 

modules defined by physical interactions and the largely monochromatic 

interactions between them. 

In order to show how our predicted epistatic interactions can supplement and 

extend these overviews of the cell, we created a combined E-MAP, consisting 

of the published RNA, Chromosome and Signalling E-MAPs, augmented with 

new predictions arising from this manuscript. We mapped the resulting 

combined E-MAP onto a recently produced high quality list of yeast protein 

complexes[37], using the method of Bandyopadhyay and coworkers[20, 34]. 

We identified pairs of complexes bridged by genetic interactions which were 

significantly more negative or positive than one would expect by chance 

(P<0.001). Additionally we identified complexes whose internal interactions 

were similarly `monochromatic'. 

Our inferred interactions have two main uses in this context. First, they 

provide additional evidence for previously proposed connections among 

protein complexes, and second, they establish new connections. By 

comparing the resulting network of linked complexes before and after the 

addition of predicted interactions, we can see which links are a direct result of 

our predicted interactions. In total 105 ‘inter complex’ links were significantly 

`monochromatic' after the addition of our predictions, in other words a set of 

previously unknown inter-complex links identified with the help of inference. In 

contrast, the statistical significance of only one `intra complex' link increased 
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after including our predictions. This apparent discrepancy chiefly arises due to 

the composition of the E-MAPs published to date, where complexes tend to 

be represented in only a single E-MAP. Interactions between complexes 

therefore frequently correspond to links between E-MAPs (Table 5 and Fig. 

3). 

The largest connected component of these 105 novel `inter-complex' links. Is 

shown in Figure 4A. This figure is effectively an overview of how cellular 

processes are organized into modular arrangements, while operating at 

different hierarchical levels. At the level of the protein complex, individual 

proteins physically interact, while at the pathway or function level, protein 

complexes communicate with each other through interactions that are 

reflected at the epistatic level.  

For instance, the cytoplasmic small ribosomal subunit is central to a cluster of 

protein complexes linking protein translation (guanyl nucleotide exchange 

factor; prefoldin complex) to DNA biology(e.g. replication factor C, RecQ 

helicase-Topoisomerase III) and complexes mediating gene 

expression/chromatin biology (e.g. NuA3 HAT complex). This is consistent 

with a coordinating role for the ribosome in regulating different aspects of 

these processes during the cell cycle[38]. Interestingly, the DNA biology gene 

clusters interact negatively with the ribosome (suggestive of a supportive or 

co-operative function), while the prefoldin and guanyl nucleotide exchange 

factor genes interact positively (suggestive of a modifying or regulating 

relationship). 

Insights into chromatin modifying machines: 
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A good example of how prediction consolidates previously proposed links 

between complexes, while highlighting new ones, is the SWR-C complex (Fig. 

4B).  This 13 subunit complex is responsible for deposition of the H2A histone 

variant Htz1 into chromatin in order to promote gene expression and inhibit 

silencing by heterochromatin[39, 40].  Unsurprisingly, SWR-C has been 

functionally linked to other chromatin modifying complexes including the NuA4 

histone acetyltransfersase and the Ino80-C chromatin remodeling 

complexes[41]. In fact, several proteins are shared among these complexes, 

including Rvb1p, Arp4p and Yaf9p.  Connections between SWR-C and NuA4 

or Ino80-C components have previously been observed in E-MAP 

experiments, and also between SWR-C and another chromatin modifying 

complex, COMPASS.  COMPASS houses a histone H3K4 methyltransferase 

activity that contributes to gene silencing near telomeres, and is linked to 

SWR-1 activity via three previously observed E-MAP pairs: SDC1 with SWR1, 

SWC5 and VPS71.  Our predicted interactions however, link the COMPASS 

subunit SDC1 to eight additional SWR-C subunits: five via negative epistasis 

(SWC3, VPS72, ARP4, ARP6, YAF9) and three (RVB1, RVB2, ACT1) via 

weakly positive epistatic interactions (Fig. 4 B). We tested the SDC1-SWC5 

combination in the small-scale E-MAP (Table 4) and found a very strong 

negative epistasis (S-score = -15) that agreed with our imputation from the 

Chromosome Biology/RNA Processing pair of E-MAPs (S-score = -7). 

We also predicted an interaction between components of the SWR-C complex 

(VPS72, SWC5, ARP6, YAF9, SWC3) and the nuclear pore complex (NPC) 

components Nup170 and Nup188, Fig. 4 (B). We experimentally tested and 

validated four of these newly predicted epistatic interactions between these 
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two complexes in the small-scale E-MAP where the predicted S-score agreed 

with the measured interaction (all S < -3).  Interactions between these two 

components and SWR-C had not been observed before E-MAP screening, 

but are consistent with observations in the RNA processing E-MAP that 

connected SWR-C components with the NPC components Nup120p and 

Mex67p, and a recent report linking Htz1p deposition and the tethering of 

genes of the nuclear pore[42].  

We also experimentally confirmed negative interactions between SWC5 and 

VPS72 and the nuclear importin KAP122, Fig. 4 (B), whose gene product 

binds to the NPC components Nup1p and Nup2p (predicted and observed S-

scores = -10/-8 for both interactions). Thus our predicted epistatic interactions 

suggest new links between SWR-C and components of both the NPC and 

soluble nuclear transport factors, consistent with a biological rationale 

whereby histone exchange within nucleosomes is likely to be coordinated with 

several aspects of the biology of the nucleus [43]. 

New connections were also made between SWR-C and protein complexes 

involved in different steps of gene expression.  The snRNP Brr1p is involved 

in snRNP biogenesis pre-mRNA splicing and the cognate gene was predicted 

to strongly negatively interact with ARP6, VPS72, SWC3, SWC5, and YAF9 

Fig. 4 (B).  Two of these interactions were tested and confirmed in the small-

scale E-MAP (predicted and observed S-score for SWC5-BRR1 was -8/-9, 

and for VPS72-BRR1 is -8/-6), while further connections had already been 

reported in the RNA E-MAP(SWR1-BRR1 and VPS71-BRR1).  Similarly, five 

members of SWR-C were predicted to interact with LEA1, a gene encoding a 

U2 snRNP component involved in telomere maintenance[44].  Two 
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interactions were tested and confirmed (S-score for VPS72-LEA1 

predicated/observed was -7/-7; for SWC5-LEA1 was -7/-8), Fig 4 (B).  Four 

members of SWR-C, VPS72, APR6, SWC3 and SWC5, were predicted to 

negatively interact with the APT cleavage and polyadenylation factor 

subcomplex component SYC1, with both VPS72 and SWC5 tested and 

confirmed (predicted and observed S-scores -3/-2 in both cases), Fig. 4 (B).  

Thus our predicted interactions link SWR-C to several aspects of gene 

expression. Interestingly, mRNA splicing and poly(A) cleavage , previously 

believed to be independent steps of gene expression, are now considered to 

be linked through large protein complexes that mediate surveillance 

mechanisms[45]. 

Evidence for links between the RPD3L complex and ribosome 

maturation : 

Another notable connection is that established between proteins associated 

with the Box C/D small nucleolar RNAs (snoRNAs) and the Rpd3L histone 

deacetylase.  Genes encoding the Box C/D snRNP associated proteins Nop1 

and Sik1 were previously linked to Rpd3L components Pho23, Sin3, and 

Rtx2, but this was extended in our study to four additional Rpd3L-C genes, 

Cti6, Dep1, Sds3, Rpd3 (Fig. 4 C). It is currently unclear how these two 

complexes functionally interact.  The Box C/D snoRNP is responsible for 2'-O-

methylation of pre-RNA during ribosome maturation[46], while Rpd3L-C is 

involved in the regulation of a wide variety of yeast genes [47-49].  Perhaps 

the extensive genetic interactions between genes encoding the complex 

subunits, all positive, reflect some communication between ribosome 

biogenesis and global gene expression changes during growth or during the 
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cell cycle.  A number of replication defects that map to the snoRNP 

component Sik1 (also known as Nop56) have been reported[50], while human 

snoRNP associated proteins have been co-purified with proteins involved in 

DNA replication and transcription[51].  Very recently, Rpd3L-C proteins were 

implicated in replication timing events in yeast[52], so a plausible explanation 

for epistasis between these complexes could be based on the coordination of 

DNA replication or the regulation of gene expression or both. 

Discussion 

We have developed and implemented a method for predicting E-MAP 

interactions whose accuracy is similar to that reported for replicate E-MAP 

screens. 

While it is not possible to carry out a direct comparison of our approach to that 

of previously proposed ‘within E-MAP’ imputation approaches[30, 31], we can 

gain some insight from a comparison of the reported results.  

Ulitsky et al evaluated their imputation methods using a number of different 

models for the source of the missing data. One such model, dubbed ‘Cross’, 

was used to model the potential merging of two E-MAP datasets and 

resembles the problem we are trying to solve. Their method was able to 

achieve accurate imputations (r > 0.4) in instances when the two E-MAPs 

shared over 64% of their genes. However, the E-MAPs published to date 

rarely have an overlap greater than 20% of their genes because they focus on 

different aspects of cell biology. Additionally, the Ulitsky model was limited to 

cases where over 50% of the potential interactions were present, a condition 

not met by any of the overlapping datasets discussed in this paper. 
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Furthermore, Ulitsky et al assessed the accuracy of their imputations within 

the Chromosome E-MAP by comparing them to the overlap region with the 

RNA E-MAP. The correlation of their imputed interactions with these 

measured interactions was ~0.45. Similar to our own results, this was 

considerably lower than the results expected based on internal cross-

validation.  This apparent discrepancy can be attributed to the limitations of 

internal cross validation, and the addition of experiment specific noise.  

Finally, we note that the recall for positive interactions is generally lower than 

that for negative interactions. The authors of both ‘within E-MAP’ imputation 

papers have previously highlighted this phenomenon, and put forward 

plausible explanations for its cause. There are fewer positive interactions 

overall, and thus fewer examples to draw upon. Also the relative growth rate 

changes arising from negative interactions are generally higher than those 

from positive interactions, and these strong negative interactions are likely to 

be more dominant than positive interactions when assessing the similarity of 

neighbors.  

Overall, comparisons with the published results indicate that we are achieving 

similar accuracy for our predictions ‘between E-MAPs’ to that of the reported 

accuracy ‘within E-MAPs’.  

One potential caveat to our approach is that we are assuming genes which 

have similar interaction profiles across a subset of their interactions, i.e. within 

an E-MAP, will have globally similar interaction profiles. This is potentially not 

true for all multi-functional genes, for which we could identify neighbors that 

are locally, but not globally, similar. However given the size of the E-MAPs 
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(hundreds of genes), and the high correlation threshold we set (0.6) it is likely 

that the number of such spurious neighbor relationships is minimal. 

Conclusion 

In summary, we have developed and implemented a procedure for predicting 

quantitative genetic (or epistatic) interactions using independent experiments 

that contain overlapping query genes. We show that our predictions are 

accurate and that the predicted gene pairs share biological properties of 

experimentally determined gene pairs. We supplemented the known yeast 

epistasis network (comprising all E-MAP experiments carried out to date) with 

our new predictions, generating an enlarged yeast epistasis map containing 

both novel inter-complex links and reinforced links that add confidence to 

existing links through additional data. Studies using quantitative genetic 

interactions have increased in number dramatically in recent years. Although 

we have focused on E-MAP technology, large numbers of interactions 

continue to be generated using traditional screens or the synthetic genetic 

analysis(SGA)[53, 24] or D-SLAM methods[54]. Furthermore, while they 

largely originated in yeast models, methods for carrying out epistasis screens 

have now been developed in other multi-cellular organism models, so it is 

likely that our method will prove increasingly important in future. 

Materials and Methods 

Materials 

The three E-MAP datasets analyzed in this paper can be obtained from the 

supplementary materials of their corresponding papers[32-34].  
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Genetic interactions can be defined as the divergence(ε) in the observed 

fitness of strains with two disrupted genes(wab) from the expected fitness. The 

expected fitness is calculated using the fitness of strains with individual gene 

disruptions, typically using a multiplicative model(wawb) .  

More formally : 

 

E-MAPs model this divergence using the S-score, a modified t-score, which 

takes into account both the magnitude of the divergence, and the variance of 

the measurements [19]. It thus represents the magnitude of the observed 

effect and the confidence that it is the result of a true genetic interaction. Each 

E-MAP consists of a matrix of these S-scores, indicating the type and strength 

of interaction between each pair of genes under consideration. Negative 

scores indicate negative epistasis, i.e. the yeast grew more slowly than 

expected, while positive scores indicate positive epistasis, i.e. more rapid 

growth was observed. Scores close to zero indicate the probable absence of 

an interaction between two genes – i.e. they function in independent 

pathways in the cell.  

The GO Slim mapping at the Saccharomyces Genome Database (SGD)[55] 

was used as the source of gene ontology annotations. These are high-level 

terms, so annotations which contained more than 1000 genes were filtered 

out. Phenotype data was also taken from the Saccharomyces Genome 

Database. Phenotypes associated with more than 175 genes were filtered 

out, resulting in the removal of terms such as ‘inviable’, ‘viable’, and 

ε =ω ab −ω aω b



 22 

‘haploinsufficient’. Both annotation sets were downloaded on 1st February 

2010. 

Additionally we investigated whether our predicted interactions were more 

likely than random to have been previously identified as genetically 

interacting. For this we used annotations from the Biogrid, version 2.0.61[56]. 

Our ‘positive’ test set was comprised of gene pairs annotated with ‘Positive 

Genetic’ or ‘Synthetic Rescue’, while our ‘negative’ test set was comprised of 

gene pairs annotated with ‘Synthetic Lethality’ or ‘Synthetic Growth Defect’. 

Methods 

Creating the combined E-MAP : 

Our combined E-MAP contained all interactions present in the three individual 

E-MAPs and our predicted interactions. It was created as follows: In cases 

where the interaction was present in more than one E-MAP, an average of all 

available interactions was used. In cases where both a measured interaction 

and a predicted interaction were present, then the measured interaction was 

used. In cases where there were multiple predictions for a single interaction, 

the results were averaged. 

Identifying Inter and Intra Complex links : 

Given the large number of predictions generated, a method to aid their 

visualization and interpretation was necessary. We exploited the modular 

architecture of the cell, and focused on interactions at the level of the protein 

complex. Our set of known protein complexes was taken from a recent 

manually curated set developed by Pu et al [37] as a more up to date 
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alternative to the widely used MIPS dataset. This set consists of 408 

complexes backed by evidence from small scale experiments. To identify 

strong monochromatic genetic interactions between complexes, we used a 

method developed by Bandyopadhyay et al[20]. The median genetic 

interaction between proteins from two different complexes was compared to 

the median of 106 equal-sized random samples of genetic interactions. 

Interactions were considered significant at P<0.001, the same threshold used 

in [34]. The same method and threshold were used to identify strong genetic 

interactions within individual complexes. 

Small Scale E-MAP Validation 

Validation was performed using a small-scale E-MAP, and is evaluated in 

Table 4. The double mutant strains were grown and scored using the 

standard protocols described in [19, 18]. We evaluated the performance of our 

prediction using terms borrowed from the information retrieval community: 

precision and recall. These are defined as follows: 

Precision = 
TruePositives

TruePositives+ FalsePositives
 

 

Recall = 
TruePositives

TruePositives+ FalseNegatives
 

 

The small-scale E-MAP was taken to be the ‘gold-standard’ for identifying 

strong positive and negative interactions, and precision and recall were 
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evaluated for the overlap between this E-MAP and each of the datasets under 

consideration in Table 4. 
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Figures: 

Figure 1 - Symmetric Nearest neighbors: The area in grey represents the 
space where we predict interactions. The labels represent the standard set 
theory definitions – e.g. A\B signifies genes that are in A but not in B. For the 
missing value (i, j), values from (i',j) and (i,j') would be combined 

Figure 2 - Similarity threshold vs accuracy: the impact of the similarity 
threshold on the accuracy of the predicted S-scores, as measured by 
correlation between predicted and experimentally observed values (A) and 
NRMSE(B). (C) is a density plot showing agreement between independent E-
MAP experiments[32, 34] and agreement between observed and predicted 
interactions at thresholds 0.8 (D), 0.6 (E) and 0.4 (F). Lines are drawn at the 
thresholds which have previously been used to identify ‘significantly negative’ 
and ‘significantly positive’ interactions[33]. Interactions in the light green 
boxes indicate values which should be positive or negative, which have been 
predicted as neutral(and vice versa). Interactions in the dark green boxes 
indicate values whose polarity has been switched -- significant negatives 
predicted as positives and  vice versa. 

Figure 3 - Novel inter-complex edges generated by newly-inferred 
epistatic interactions: Nodes represent protein complexes (as cataloged by 
Pu et al [57]) while edges represent strong net positive or net negative genetic 
interactions between complexes. Grey edges represent interactions which are 
unaffected by our predicted interactions, violet edges represent interactions 
which have been given additional links by our predicted interactions, and red 
edges represent previously unreported interactions between complexes, 
established using our method. Edges are only drawn if the median genetic 
interaction is significantly more positive or negative than one would expect by 
chance (P<0.001) 

Figure 4 - Novel and Supporting Inter complex edges: A. Monochromatic 
interactions between complexes whose significance is increased after the 
addtion of our predicted epistatic interactions. B. A close up of the Swr1 
complex. C. Positive interactions between the “box C/D snoRNP” complex 
and “Rpd3L” complex 
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Tables: 

Table 1 - An overview of the E-MAPs analyzed in this study 

Dataset Alleles % Missing Reference 

Chromosome 754 34.65 [32] 

RNA 483 12.69 [34] 

Signalling 552 29.53 [33] 

 

Table 2 - Overlap between different E-MAPs 

Dataset A Dataset B Common 
Alleles 

Common 
Interactions 

Correlation 

Chromosome RNA 125 4030 0.66 

Chromosome Signalling 142 5321 0.50 

RNA Signalling 63 890 0.60 
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Table 3 - Enrichment of predicted interactions between pairs of E-MAPs: 
Enrichment of predicted interactions between the different E-MAPs. 
Significantly enriched values (P<0.01) are highlighted in bold. All p-values in 
these tables are calculated using Fisher's exact test, and the results are 
generated using a correlation threshold of 0.6. 

Chromosome - RNA 

  Positive Negative 

Dataset Overlap Enrichment p-value Overlap Enrichment p-value 

GO Process 238 1.50 2.76E-12 393 1.66 9.55E-29 
SGD Phenotype 59 2.73 8.45E-12 135 4.19 9.35E-44 
Positive Genetic 20 23.82 7.29E-21 3 2.39 0.13 
Synthetic Sick 2 1.30 0.67 49 21.35 1.44E-46 

       

Chromosome - Signalling 

    Positive     Negative   

Dataset Overlap Enrichment p-value Overlap Enrichment p-value 

GO Process 56 1.39 5.98E-03 121 1.30 1.12E-03 
SGD Phenotype 10 1.40 2.50E-01 67 4.07 2.13E-22 
Positive Genetic 3 13.48 1.56E-03 2 3.90 0.09 
Synthetic Sick 0 0.00 1.00 24 19.98 3.06E-23 

       

RNA - Signalling 

    Positive     Negative   

Dataset Overlap Enrichment p-value Overlap Enrichment p-value 

GO Process 65 2.03 5.97E-09 162 2.25 7.63E-26 
SGD Phenotype 33 5.07 1.87E-14 88 6.02 7.13E-42 
Positive Genetic 16 71.81 1.19E-24 2 4.00 0.09 
Synthetic Sick 1 2.40 0.34 54 57.77 1.98E-74 

 

Table 4 - Accuracy as measured by a new small-scale E-MAP :  

The overlap between our predictions and a new small-scale E-MAP. In total 
1731 of our predictions were evaluated using this E-MAP. The overlap 
between the existing E-MAPs and the small-scale E-MAP are given for 
comparison. 

    Positive Neutral Negative 

  Correlation Precision Recall Precision Recall Precision Recall 

Predictions  0.482 0.279 0.182 0.894 0.929 0.491 0.402 

Chromosome 0.560 0.233 0.306 0.912 0.931 0.566 0.430 

RNA 0.574 0.358 0.351 0.901 0.914 0.578 0.524 

Kinase 0.599 0.172 0.458 0.952 0.940 0.528 0.518 
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Table 5 - Inter and Intra complex links :   

Counts of the significant monochromatic epistatic interactions that occur 
within and between physical complexes defined by Pu et al. Inter complex 
links are genetic interactions that bridge two physical complexes, while intra 
complex links are genetic interactions within a single complex. Interactions 
are counted here if they are significantly more negative or positive than one 
would expect at random (P < 0.001).  

Dataset Intra Complex Links Inter Complex Links 

Combined without 
predictions 

20 674 

Combined with 
predictions 

21 761 

 

Additional Files 

Additional file 1 – ChromosomeRNA.txt  

Predicted interactions between the Chromosome and RNA datasets. 

Additional file 2 – ChromosomeSignalling.txt  

Predicted interactions between the Chromosome and Signalling datasets. 

Additional file 3 – SignallingRNA.txt   

Predicted interactions between the RNA and Signalling datasets. 

Additional file 4 – small_scale_verification.txt 

A side by side comparison of the predicted interactions and those measured 
in a smaller scale E-MAP.  
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