
Noname manuscript No.
(will be inserted by the editor)

EVE: Explainable Vector Based Embedding Technique
Using Wikipedia

M. Atif Qureshi · Derek Greene

Abstract We present an unsupervised explainable vector embedding technique,
called EVE, which is built upon the structure of Wikipedia. The proposed model
defines the dimensions of a semantic vector representing a concept using human-
readable labels, thereby it is readily interpretable. Specifically, each vector is con-
structed using the Wikipedia category graph structure together with the Wikipedia
article link structure. To test the effectiveness of the proposed model, we consider
its usefulness in three fundamental tasks: 1) intruder detection — to evaluate its
ability to identify a non-coherent vector from a list of coherent vectors, 2) ability
to cluster — to evaluate its tendency to group related vectors together while keep-
ing unrelated vectors in separate clusters, and 3) sorting relevant items first — to
evaluate its ability to rank vectors (items) relevant to the query in the top order
of the result. For each task, we also propose a strategy to generate a task-specific
human-interpretable explanation from the model. These demonstrate the overall
effectiveness of the explainable embeddings generated by EVE. Finally, we com-
pare EVE with the Word2Vec, FastText, and GloVe embedding techniques across
the three tasks, and report improvements over the state-of-the-art.

Keywords Distributional semantics · Unsupervised learning · Wikipedia

1 Introduction

Recently the European Union has approved a regulation which requires that citi-
zens have a “right to explanation” in relation to any algorithmic decision-making
(Goodman and Flaxman 2016). According to this regulation, due to come into
force in 2018, an algorithm that makes an automatic decision regarding a user,
entitles that user to a clear explanation as to how the decision was made. With

M. Atif Qureshi
Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
E-mail: muhammad.qureshi@ucd.ie

Derek Greene
Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
E-mail: derek.greene@ucd.ie

Preprint Version

2 M. Atif Qureshi, Derek Greene

this in mind, we present an explainable decision-making approach to generating
vector embeddings, called the EVE model.

Distributional semantic models quantify linguistic items based on their dis-
tributional properties, and these models date back to 1960’s (Harris 1968). More
specifically, these models encode word meanings via counting co-occurences and
recording them in vectors. A recent phenomenon known as word embeddings which
take their roots from distributional semantic models refer to a family of techniques
that simply describes a concept (i.e.word or phrase) as a vector of real numbers
(Pennington et al 2014). Generally, word embedding vectors are defined by the
context in which those words appear (Baroni et al 2014). Put simply, “a word is
characterized by the company it keeps" (Firth 1957). To generate these vectors, a
number of unsupervised techniques have been proposed which includes applying
neural networks (Mikolov et al 2013a,b; Bojanowski et al 2016), constructing a
co-occurrence matrix followed by dimensionality reduction (Levy and Goldberg
2014; Pennington et al 2014), probabilistic models (Globerson et al 2007; Arora
et al 2016), and explicit representation of words appearing in a context (Levy et al
2014, 2015). For example, the words king and queen are more similar to each other
compared to the word car.

This paper proposes the EVE model also takes inspiration from distributional
semantic models, and generates vector representation of a concept using Wikipedia
articles and categories. As an example, hawk and penguin are two concepts which
when embedded in a semantic space shall relate to each other in the semantic sub-
space of the class birds and share lesser similarity with snake that belongs to the
class reptiles. Both EVE and word embeddings share the common goal of defining
words/concepts. The difference between the two is that word embeddings define
a word vector on the basis of surrounding words observed in a corpus while EVE
defines a concept vector on the basis of its association with Wikipedia articles and
categories i.e., semantically.

It is important to note that existing word embedding techniques do not benefit
from the rich semantic information present in structured or semi-structured text.
Instead, they are trained over a large corpus, such as a Wikipedia dump or collec-
tion of news articles, where any structure is ignored. However, in this contribution
we propose a model that uses the semantic benefits of structured text for defining
embeddings. Moreover, to the best of our knowledge, word embedding techniques
do not provide human-readable vector dimensions, and thus, are not readily open
to human interpretation. In contrast, EVE associates human-readable semantic
labels with each dimension of a vector, thus making it an explainable vector em-
bedding technique.

Embedding techniques have been commonly applied in tasks such as measuring
word similarities and deriving analogies (Mikolov et al 2013a; Pennington et al
2014). However, the success of many text mining tasks crucially depends on the
way in which textual data is represented or modelled (Liu et al 2015). This has
given rise to exploiting embeddings to provide rich representations of text in the
wider area of data mining. Recently, different embedding techniques have proved
their successful application in various data mining tasks such as discrimination
(Liu et al 2015; Fu et al 2016; Niu et al 2015), clustering (Wang et al 2016; Sari
and Stevenson 2016; Nikfarjam et al 2015), and ranking (Kuzi et al 2016; Diaz
et al 2016; Ganguly et al 2015; Zheng and Callan 2015; Zuccon et al 2015).

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 3

To evaluate EVE, we consider its usefulness in the context of three fundamental
tasks that form the basis for many data mining activities – discrimination, cluster-
ing, and ranking. We argue for the need for objective evaluation-based strategies
to ensure that subjective opinions are discouraged, which may be found in tasks
such as finding word analogies. In each of these tasks, EVE inherently makes use
of traditional similarity scores (Mikolov et al 2013a; Pennington et al 2014) as
shown in the later section. These tasks are applied to seven annotated datasets
which differ in terms of topical content and complexity, where we demonstrate not
only the ability of EVE to successfully perform these tasks, but also its ability to
generate meaningful explanations to support its outputs.

The reminder of the paper is organized as follows. In Section 2, we provide an
overview of research relevant to this work. In Section 3, we provide background
material covering the structure of Wikipedia, and then describe the methodology of
the EVE model in detail. In Section 4, we provide detailed experimental evaluation
on the three tasks mentioned above, and also demonstrate the novelty of the EVE

model in generating explanations. Finally, in Section 5, we conclude the paper with
further discussion and future directions. The relevant dataset and source code for
this work can be publicly accessed at http://mlg.ucd.ie/eve.

2 Related Work

Assessing the similarity between words is a fundamental problem in natural lan-
guage processing. Research in this area has largely proceeded along two directions:
1) techniques built upon the distributional hypothesis whereby contextual infor-
mation serves as the main source for word representation; 2) techniques built upon
knowledge bases whereby encyclopedic knowledge is utilized for determination of
word associations. In this section, we provide an overview of these directions, along
with a description of some works attempting to bridge the gap between techniques
(1) and (2) above through knowledge-powered word embeddings. At the same time
we also present an explanation of the novelty of EVE. Finally, recent research that
aims to bring some level of interpretability to “black-box” machine learning models
is also reviewed.

2.1 From Distributional Semantic Models to Word Embeddings

Traditional computational linguistics has shown the utility of contextual infor-
mation for tasks involving word meanings, in line with the distributional hy-
pothesis which states that “linguistic items with similar distributions have similar
meanings" (Harris 1954). Concretely, distributional semantic models (DSMs) keep
count-based vectors corresponding to co-occurring words, followed by a transfor-
mation of the vectors via weighting schemes or dimensionality reduction (Gallant
et al 1992; Schütze 1992; Baroni and Lenci 2010). Furthermore, information re-
trieval community defined words in context to documents (Salton and McGill
1986) which was picked up by the natural language processing community with
technique called latent semantic analysis (LSA) (Deerwester 1988), a form of DSM.
Several optimisations have been proposed in the LSA model1 and among the ear-

1 http://lsa.colorado.edu/

4 M. Atif Qureshi, Derek Greene

lier variants an idea of using encyclopaedic text was also discussed (Landauer et al
1998). A new family of methods, generally known as “word embeddings", learns
word representations in a vector space, where vector weights are set to maximize
the probability of the contexts in which the word is observed in the corpus (Bengio
et al 2003; Collobert and Weston 2008).

A more recent type of word embedding technique, word2vec, called into ques-
tion the utility of deep models for learning useful representations, instead propos-
ing continuous bag-of-words (Mikolov et al 2013a) and skip-gram (Mikolov et al
2013b) models built upon a simple single-layer architecture. Another recent word
embedding technique by (Pennington et al 2014) aims to combine best of both
strategies, i.e. usage of global corpus statistics available to traditional distribu-
tional semantics models and meaningful linear substructures. Finally, (Bojanowski
et al 2016) proposed an improvement over word2vec by incorporating character n-
grams into the model, thereby accounting for sub-word information.

2.2 Knowledge Base Approaches for Semantic Similarity and Relatedness

Another category of work which measures semantic similarity and relatedness be-
tween textual units relies on pre-existing knowledge resources (e.g. thesauri, tax-
onomies or encyclopedias). Within the works in the literature, the key differences
lie in the knowledge base employed, the technique used for measuring seman-
tic distances, and the application domain (Hoffart et al 2012). Both (Budanitsky
and Hirst 2006) and (Jarmasz 2012) used generalization relations (‘is a’) between
words using WordNet-based techniques; (Metzler et al 2007) used web search logs
for measuring similarity between short texts, and both (Strube and Ponzetto 2006)
and (Gabrilovich and Markovitch 2007) used rich encyclopedic knowledge derived
from Wikipedia. (Witten and Milne 2008) made use of tf.idf-like measures on
Wikipedia links and (Yeh et al 2009) made use of random walk algorithm over
the graph driven from Wikipedia’s hyperlink structure, infoboxes, and categories.
Recently, (Jiang et al 2015) utilize various aspects of page organizations within a
Wikipedia article to extract Wikipedia-based feature sets for calculating seman-
tic similarity between concepts. (Qureshi 2015) also presented a Wikipedia-based
semantic relatedness framework which uses Wikipedia categories and their sub-
categories to a certain depth count to define the association between two Wikipedia
articles whose categories overlap with the generated hierarchies.

2.3 Knowledge-Powered Word Embeddings

In order to resolve semantic ambiguities associated with text data, researchers
have recently attempted to increase the effectiveness of word embeddings by in-
corporating knowledge bases when learning vector representations for words (Xu
et al 2014). Two categories of works exist in this direction: 1) encoding entities and
relations in a knowledge graph within a vector space with the goal of knowledge
base completion (Bordes et al 2011; Socher et al 2013); 2) enriching the learned
vector representations with external knowledge (from within a knowledge base) in
order to improve the quality of word embeddings (Bian et al 2014). The works in
the first category aim to train neural tensor networks for learning a d-dimensional

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 5

vector for each entity and relation in a given knowledge base. Additionally, some
works within this category attempt to jointly learn words and entities together
with relational facts into the same continuous vector space with the goal of com-
pleting facts in a knowledge base (Wang et al 2014; Wu et al 2015). The works in
the second category leverage morphological and semantic knowledge from within
knowledge bases as an additional input during the process of learning word repre-
sentations. More recently, few works within the second category have attempted
to widen the scope of incorporated semantic knowledge, by including synonyms
and other annotations of semantic markers from within WordNet and Paraphrase
Database (PPDB) (Yu and Dredze 2014; Faruqui et al 2014).

Our proposed EVE model relates to the works described in Section 2.1 in the
sense that these models all attempt to construct word embeddings in order to
characterize relatedness between words. However, like the approaches described in
Section 2.2, EVE also benefits from semantic information present in structured
text, albeit with the different aim of producing embeddings. The EVE model
is different from knowledge-powered word embeddings in that we produce a more
general framework by learning vector representations for concepts rather than lim-
iting the model to entities and/or relations. Furthermore, we utilize the structural
organization of entities and concepts within a knowledge base to enrich the word
vectors.

The EVE model relates with graph based methods, such as PageRank (Page
et al 1999) and its variants: TextRank (Mihalcea and Tarau 2004) and TrustRank
(Gyöngyi et al 2004), in a way that it quantifies association of a concept with
Wikipedia categories using a similar graph structure (as discussed later in Sec-
tion 3.2.2). The difference between PageRank and the approach of EVE is that
PageRank scores the importance of all nodes relative to each other iteratively,
while in EVE the node (concept) is scored considering the immediate association
with other nodes in the hierarchy (Wikipedia categories) without requiring itera-
tions. Furthermore, EVE is different from the TextRank model in the sense that
the later uses unidirectional graph, where an edge between nodes is defined by
the co-occurrence of words, followed the application of the PageRank equation to
detect most important nodes as keywords of a document, while EVE uses directed
graph to construct embeddings relying on the Wikipedia category hierarchy. In
particular, EVE shares another similarity2 with TrustRank in the way that the
scores are propagated from a concept into the neighbouring nodes in case of the
EVE model while in TrustRank, the score are propagated from trusted nodes to
the entire graph3 using the PageRank equation. Lastly, personalised PageRank
has been applied to solve the word sense disambiguation(Agirre and Soroa 2009)
which is a similar to TrustRank i.e., initial condition of nodes are non-uniform (or
personalised) however, the objective is to disambiguate among word senses of word
appearing in a context (of a sentence), unlike scoring all nodes. The EVE model
differs from personalised PageRank for disambiguation in terms of objectivity i.e.,
discriminating between word senses compared to defining an embedding using im-
mediate graph hierarchy, and as well the same way it differs from TrustRank.

A recent work called ConVec (Sherkat and Milios 2017), attempts to learn
Wikipedia concept embeddings by making use of anchor texts (i.e. linked Wikipedia

2 besides the basic similarity with PageRank
3 with an intuition to penalise untrusted pages (or spam)

6 M. Atif Qureshi, Derek Greene

articles). In contrast, EVE gives a more powerful representation through the com-
bination of Wikipedia categories and articles. Finally, a key characteristic that
distinguishes EVE from all existing models is its expressive mode of explanations,
as enabled by the use of Wikipedia categories and articles.

2.4 Interpretability for Machine Learning Algorithms

The earliest efforts towards explainable algorithms emerged from within the field
of expert systems, where advisory systems were designed to facilitate users (Hunt
and Price 1988; Lopez-Suarez and Kamel 1994; Wick and Thompson 1992). New
challenges that emanated from the enormous scale of Web data first led to the
revival of explanations within the area of recommender systems, where poor in-
terpretability became a serious issue for collaborative filtering methods (Ren et al
2017). Most work within this domain remains limited to the integration of content-
based latent parameters (e.g. from within reviews) with ratings so as to improve
the quality of recommendations, and some associated explanation in the form of
word or topic labels (Bhargava et al 2015; Diao et al 2014; Tintarev and Masthoff
2015; Zhang et al 2014). This however does not reveal much about the black box
that produces the recommendation which according to Lipton’s argument is an
outcome of “interpretability" not having a clear definition (Lipton 2016), and does
not generalize to domains where review text is not available.

More recently, the machine learning community has begun to work towards
enabling an understanding of models that produce predictions to facilitate trans-
parency (Henelius et al 2014). A recent work by (Datta et al 2016) aims to approach
the problem via a game-theoretic perspective and shows that different choices of
probability spaces and random variables yield a number of different interesting au-
diting measures. In a similar spirit, (Adler et al 2016) aims to analyze “disparate
impact" by changing test points to see changes in predictions. (Ribeiro et al 2016)
introduce a method for explaining classifications by approximating the local deci-
sion boundary of a given black-box machine learning system, which in turn allows
the human operator to inspect how the classification depends locally on the most
important input features. Note that all works emanating from within machine
learning require domain experts for the interpretation of the models; EVE in con-
trast generates human-readable labels that does not require domain expertise, as
is demonstrated in later sections of this paper.

3 The EVE Model

3.1 Background on Wikipedia

Before we present the methodology of the proposed EVE model, we firstly provide
background information on Wikipedia, whose underlying graph structure forms the
basic building blocks of the model.

Wikipedia is a multilingual collaboratively-constructed encyclopedia which is
actively updated by a large community of volunteer editors. Figure 1 shows the
typical Wikipedia graph structure for a set of articles and associated categories.
Each article can receive an inlink from another Wikipedia article while it can also

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 7

Fig. 1: An example Wikipedia graph structure for a set of four articles and ten
associated categories.

outlink to another Wikipedia article. In our example, article A1 receives inlinks
from A4 and A1 outlinks to A2. In addition, each article can belong to a number of
categories, which are used to group together articles on a similar subject. In Fig.
1, A1 belongs to categories C1 and C9. Furthermore, each Wikipedia category is
arranged in a category taxonomy i.e. , each category can have arbitrary number
of super-categories and sub-categories. In our case, C5, C6, C7 are sub-categories
of C4, whereas C2 and C3 are super-categories of C4.

To motivate with a simple real example, the Wikipedia article “Espresso” re-
ceives inlinks from the article “Drink” and it outlinks to the article “Espresso
machine”. The article “Espresso” belongs to several categories, including “Coffee
drinks” and “Italian cuisine”. The category “Italian cuisine” itself has a number of
super-categories (e.g. “Italian culture”, “Cuisine by nationality”) and sub-categories
(e.g. “Italian desserts”, “Pizza”). These Wikipedia categories serve as a semantic tag
for the articles to which they link (Zesch and Gurevych 2007).

3.2 Methodology

We now present the methodology for generating embedding vectors with the EVE

model. Firstly, a target word or concept is mapped to a single Wikipedia concept

article
4. The vector for this concept is then composed of two distinct types of

dimensions. The first type quantifies the association of the concept with other
Wikipedia articles, while the second type quantifies the association of the concept
with Wikipedia categories. The intuition here is that related words or concepts
will share both similar article link associations and similar category associations
within the Wikipedia graph, while unrelated concepts will differ with respect to
both criteria. The methods used to define these associations are explained next.

4 This can be an exact match or a partial best match using an information retrieval algorithm

8 M. Atif Qureshi, Derek Greene

Fig. 2: An example of the assignment of the normalized articlescore for the concept
article Aconcept, based on inlink and outlink structure.

3.2.1 Vector dimensions related to Wikipedia articles

We firstly define the strategy for generating vector dimensions corresponding to
individual Wikipedia articles. Given the target concept, which is mapped to a
Wikipedia article denoted Aconcept, we enumerate all incoming links and outgoing
links between this article and all other articles. We then create a dimension cor-
responding to each of those linked articles, where the strength of association for
a dimension is defined as the sum of the number of incoming and outgoing links
involving an article and Aconcept. After creating dimensions for all linked articles,
we also add a self-link dimension

5, where the association of Aconcept with itself is
defined to be the twice of the maximum count received from the linking articles.

Fig. 2 shows an example of the strategy. In the first step, all inlinks and outlinks
are counted for the other non-concept articles (e.g.Aconcept has 3 inlinks and 1
outlink from A3). In the next step, the self-link score is computed as twice the
maximum of sum of inlinks and outlinks from all other articles (which is 8 in
this case). In the final step, normalization6 of the scores takes place, dividing by
the maximum score (which is 8 in this case). Articles having no links to or from
Aconcept receive a score of 0. Given the sparsity of the Wikipedia link graph, the
article-based dimensions are also naturally sparse.

5 This dimension is the most relevant dimension defining the concept which is the article
itself.

6 In case of best match strategy, where more than one article is mapped to a concept i.e.,
Aconcept1, Aconcept2, ... the score computed is further scaled by the relevance score of each
article for the top-k articles, then reduced by the vector addition, and normalized again.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 9

Fig. 3: Assignment of scores for the category dimensions, from the mapped article
to its related categories.

3.2.2 Vector dimensions related to Wikipedia categories

Next, we define the method for generating vector dimensions corresponding to
all Wikipedia categories which are related to the concept article. The strategy to
assign a score to the related Wikipedia categories proceeds as follows:

1. Start by propagating the score uniformly to the categories to which the concept
article belongs to (see Fig. 1).

2. A portion of the score is further propagated by the probability of jumping from
a category to the categories in the neighborhood.

3. Score propagation continues until a certain hop count is reached (i.e. a thresh-
old value categorydepth), or there are no further categories in the neighborhood.

Fig. 3 illustrates the process, where the concept article Aconcept has a score s,
which is 1 for an exact match7. First, the score is uniformly propagated across
the number of Wikipedia categories and their tree structure to which the article
belongs to (C1 and C7 tree receive s/2 from Aconcept). In the next step, the
directly-related categories (C1 and C7) further propagate the score to their super
and sub-categories, while retaining a portion of score. C1 retains a portion by
the factor 1 � jumpprob of the score that it propagate to the super and sub-
categories. Where jumpprob is the probability of jumping from a category to either
a connected super or sub-category. While C7 retains the full score since there is
no super or sub-category for further propagation. In step 3 and onwards, the score
continues to propagate in a direction (to either a super or sub-category) until hop
count categorydepth is reached, or until there is no further category to which score
could propagate to. In Fig. 3, C0 and C3 are the cases where the score cannot
propagate further, while C4 is the stopping condition for the score to propagate
when using a threshold categorydepth = 2.

7 In case of the partial best match it is the relevance score returned by BM25 algorithm.

10 M. Atif Qureshi, Derek Greene

3.2.3 Overall vector dimensions

Once the sets of dimensions for related Wikipedia articles and categories have
been created, we construct an overall vector for the concept article as follows. Eq.
1 shows the vector representation of a concept, where norm is a normalization
function, articlesscore and categoriesscore are the two sets of dimensions, while
biasarticle and biascategory are the bias weights which control the importance of
the associations with the Wikipedia articles and categories respectively. The bias
weights can be tuned to give more importance to either type of association. In Eq.
2, we normalize the entire vector such that the sum of the scores of all dimension
equates to 1, so that a unit length vector is obtained.

V ector(concept) =< norm(articlesscore) ⇤ biasarticle,
norm(categoriesscore) ⇤ biascategory >

(1)

V ector(concept) = norm(V ector(concept)) (2)

The process in above is repeated for each word or concept in the input dataset
to generate a set of vectors, representing an embedding of the data. Furthermore,
the number of dimensions of the vector is equal to the sum of the number of
the articles and categories in Wikipedia. It is particularly important to note that
these vectors are sparse due to the fact that each concept has a limited number of
associations with Wikipedia articles and categories.

In the embedding, each vector dimension is labeled with a tag which corre-
sponds to either a Wikipedia article name or a Wikipedia category name. There-
fore, each dimension carries a direct human-interpretable meaning. As we see in
the next section, these labeled dimensions prove useful for the generation of algo-
rithmic explanations.

4 Evaluation

In this section we investigate the extent to which embeddings generated using the
EVE model are useful in three fundamental data mining tasks. Firstly, we describe
a number of alternative baseline methods, along with the relevant parameter set-
tings. Then we describe the dataset which is used for the evaluations, and finally
we report the experimental results and a discussion on explanation to showcase
the effectiveness of the model. We also highlight the benefits of the explanations
generated as part of this process.

4.1 Baselines and Parameters

We compare EVE with three popular word embedding algorithms: Word2Vec,
FastText, and GloVe. For Word2Vec and FastText, we trained two well-known
variants of each – i.e. the continuous bag of words model (CBOW) and the skip-
gram model (SG). For GloVe, we trained the standard model. We also compare
our method with a well-known knowledge-powered word embedding technique pro-
posed by Faruqui et al (2014) commonly referred to as “retrofitting”.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 11

Table 1: Summary statistics of the dataset.

Topical Type Categories Mean Items per Example (Category: Items)
Category

Animal class 5 20 Mammal: Baleen whale, Ele-
phant,
Primate

Continent to country 6 17 Europe: Albania, Belgium, Bul-
garia

Cuisine 5 20 Italian cuisine: Agnolotti, Pasta,
Pizza

European cities 5 20 Germany: Berlin, Bielefeld, Bonn
Movie genres 5 20 Science fiction film: RoboCop,

The Matrix, Westworld
Music genres 5 20 Grunge: Alice in Chains

Chris Cornell, Eddie Vedder
Nobel laureates 5 20 Nobel laureates in Physics:

Albert Einstein, Niels Bohr

For each baseline, we use the default implementation parameter values (win-
dow_size=5, vector_dimensions=100), except for the minimum document fre-
quency threshold, which is set to 1 to generate all word vectors, even for rare
words. The minimum document frequency threshold is set to 1, in order to accom-
modate items which are only mentioned once in the dataset such as cuisine names
(otherwise an evaluation cannot be made for such items). This enables direct com-
parisons to be made with EVE. For “retrofitting” we use the default setting of 10
optimization iterations. For EVE, we use uniform bias weights (i.e. biasarticle=0.5,
biascategory=0.5), which provides equal importance to both dimension types. The
parameter jumpprob=0.5 was chosen arbitrarily, so as to retain half of the score by
the category while the rest is propagated. The self-link dimension=2 was chosen
arbitrarily i.e., to keep the self-cite as the most relevant dimension by the factor of
two compared to the other top linking article dimension (see Section 3.2.1). The
categorydepth =2 was chosen arbitrarily to avoid topical drifts (see Section 3.2.2),
and this parameter was also chosen in line with an intuition similar to the one
proposed in Qureshi (2015).

4.2 Dataset

To evaluate the performance of the different models, we constructed a new dataset
from the complete 2015 English-language Wikipedia dump, composed of seven
different topical types, each containing at least five sub-topical categories. On
average each sub-topical category contains a list of 20 items or concepts. The
usefulness of the dataset lies in the fact that the organization, from topics to
categories to items, is made on the bases of factual position.

Table 1 shows a statistical summary of the dataset. In this table, the column
“Example (Category, Items)” shows an example of a category name in the “Topical
Type”, together with a subset of list of items belonging to that category. For
instance, in the first row “Topical Type” is Animal class and Mammal is one of
the category belonging to this type, while Baleen whale is an item with in the

12 M. Atif Qureshi, Derek Greene

Table 2: Dataset topical types and corresponding sub-topical categories.

Topical Type Categories
Animal classes Mammal, Reptile, Bird, Amphibian, Fish
Continent to Country Africa, Europe, Asia, South America, North America, Oceania
Cuisine Italian cuisine, Mexican cuisine, Pakistani cuisine,

Swedish cuisine, Vietnamese cuisine
European cities France, Germany, Great Britain, Italy, Spain
Movie genres Animation, Crime film, Horror film, Science fiction film,

Western (genre)
Music genres Jazz, Classical music, Grunge, Hip hop music, Britpop
Nobel laureates Nobel laureates in Chemistry, Nobel Memorial

Prize laureates in Economics, Nobel laureates in Literature,
Nobel Peace Prize laureates, Nobel laureates in Physics

category of Mammal. Similarly there are other categories of the type Animal class

such as Reptile. Table 2 shows the list of categories for each topical type.
All embedding algorithms in our comparison were trained on the dataset of

complete 2015 English-language Wikipedia dump. The total number of embed-
dings generated by the EVE model is equal to the total number of Wikipedia
concept articles, i.e., 463+K (see Section 3.2). In case of baseline models, we use “article
labels”, “article redirects”, “category labels”, and “long abstracts”, with each entry as a separate
document. Note that, prior to training, we filter out four non-informative Wikipedia categories
which can be viewed as being analogous to stopwords: {“articles contain video clips”, “hidden
categories”, “articles created via the article wizard”, “unprintworthy redirects”}.

4.3 Experiments

To compare the EVE model with the various baseline methods, we define three general purpose
data mining tasks: intruder detection, ability to cluster, ability to sort relevant items first. Each
of these tasks inherently makes use of the vector (word) similarity. In the following sections
we define the tasks separately, each accompanied by experimental results and explanations.

4.3.1 Experiment 1: Intruder detection

First we evaluate the performance of EVE when attempting to detect an unrelated “intruder”
item from a list of n items, where the rest of the items in the list are semantically related
to one another. The ground truth for the correct relations between articles are based on the
“topical types” in the dataset.

Task definition: For a given “topical type”, we randomly choose four items belonging to
one category and one intruder item from a different category of the same “topical type”. After
repeating this process exhaustively for all combinations for all topical types, we generated
13,532,280 results for this task. Table 3 shows the breakdown of the total number of queries
for each of the “topical types”.

Example of a query: For the “topical type” European cities, we randomly choose four related
items from the “category” Great Britain such as London, Birmingham, Manchester, Liverpool,
while we randomly choose an intruder item Berlin from the “category” Germany. Each of the
models is presented with the five items, where the challenge is to identify Berlin as the intruder
– the rest of the items are related to each other as they are cities in Great Britain, while Berlin
is a city in Germany.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 13

Table 3: Intruder detection task — Statistics for the number of queries.

Topical Types No. of Queries
Animal class 1,938,000
Continent to country 1,904,280
Cuisine 1,938,000
European cities 1,938,000
Movie genres 1,938,000
Music genres 1,938,000
Nobel laureates 1,938,000
Total 13,532,280

Strategy: In order to discover the intruder item, we formulate the problem as a maximization
of pairwise similarity across all items, the item receiving the least score is least similar to all
other items, and thus identified as the intruder. Formally, for each model we compute

score(item(k)) =
5X

i=1

similarity(item(k), item(i)); i 6= k (3)

where the similarity function is cosine similarity (Manning et al 2008), k and i are the item
positions in the list of items, and item(k) and item(i) are the vectors returned by the model
under consideration.

Results: To evaluate the effectiveness of the EVE model against the baselines for this task,
we use accuracy (Manning et al 2008) as the measure for finding the intruder item. Accuracy
is defined as the ratio of correct results (or correct number of intruder items) to the total
number of results returned by the model:

accuracy =
| ResultsCorrect |
| ResultsTotal |

(4)

Table 4 shows the experimental results for the six models in this task. From the table it is
evident that the EVE model significantly outperforms rest of the models overall. However, in
the case of two “topical types”, the FastText CBOW yields better results. To explain this, we
next show explanations generated by the EVE model while making decisions for the intruder
detection task. Table 5 shows the results for the knowledge-powered embedding “retrofitting"
(Faruqui et al 2014); note that retrofitting takes as input any pre-trained word vector obtained
from any vector training model, and extends them with lexicon-derived relational information
to update the vectors, and in our comparisons we chose the lexicon “Paraphrase Database"
(Ganitkevitch et al 2013). As clear from Table 5, EVE outperforms retrofitted word vectors in
majority of the cases. As mentioned previously, the explanations generated by the EVE model
illustrate the reasons behind its superior performance for this task.

Explanation from the EVE model: Using the labeled dimensions in vectors produced by
EVE, we define the process to generate effective explanations for the intruder detection task
in Algorithm 1 as follows. The inputs to this algorithm are the vectors of items, and the
intruder item identified by the EVE model. In step 1, we calculate the mean vector of all the
vectors. In step 2 and 3, we subtract the influence of intruder and mean of vectors from each
other to obtain dominant vector spaces to represent detected coherent items and intruder item
respectively. In step 4 and 5, we order the labeled dimensions by their informativeness (i.e. the
dimension with the highest score is the most informative dimension). Finally, we return a
ranked list of informative vector dimensions for the both non-intruders and the intruder as an
explanation for the output of the task.

Tables 6 and 7 show sample explanations generated by the EVE model, where the model
has detected a correct and incorrect intruder item respectively. In Table 6, the query has items
selected from “topical type” animal class, where four of the items belong to the “category”

14 M. Atif Qureshi, Derek Greene

Table 4: Intruder detection task — Detection accuracy results: Comparison of EVE

with word embedding algorithms

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 0.77 0.39 0.42 0.36 0.43 0.31
Continent to Country 0.75 0.76 0.70 0.79 0.79 0.73
Cuisine 0.97 0.34 0.43 0.62 0.75 0.25
European cities 0.94 0.93 0.98 0.91 0.99 0.74
Movie genres 0.71 0.23 0.24 0.22 0.25 0.21
Music genres 0.87 0.56 0.59 0.50 0.57 0.38
Nobel laureates 0.91 0.28 0.28 0.23 0.27 0.24
Average 0.85 0.50 0.52 0.52 0.58 0.41

Note: all p-values are <10�157 for EVE with respect to all baselines

Table 5: Intruder detection task — Detection accuracy results: : Comparison of
EVE with retrofitted word vectors

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 0.77 0.39 0.42 0.35 0.43 0.32
Continent to Country 0.75 0.75 0.70 0.78 0.78 0.73
Cuisine 0.97 0.34 0.44 0.65 0.75 0.25
European cities 0.94 0.87 0.93 0.87 0.95 0.70
Movie genres 0.71 0.23 0.25 0.22 0.24 0.21
Music genres 0.87 0.54 0.57 0.49 0.55 0.37
Nobel laureates 0.91 0.29 0.29 0.26 0.27 0.24
Average 0.85 0.49 0.51 0.52 0.57 0.40

Note: all p-values are <10�157 for EVE with respect to all baselines

Algorithm 1 Explanation strategy for intruder detection task
Require: EVE ! vectorspace, vectorintruder
1: spacemean = Mean(vectorspace)
2: coherentSpaceleftover = spacemean - vectorintruder
3: intruderleftover = vectorintruder - spacemean

4: coherentSpaceinfo_features = order_byinfo_features(coherentSpaceleftover)
5: intruderinfo_features = order_byinfo_features(intruderleftover)
6: return coherentSpaceinfo_features, intruderinfo_features

birds, while the item ‘snake’ belongs to the “category” reptile. As can be seen from the table,
the bold features in the non-intruder and intruder column obviously represent bird family and
snake respectively, which is the correct inference. Furthermore, the non-bold features in the
non-intruder and intruder columns represent deeper relevant relations which may require some
domain expertise. For instance, falconiformes are a family of 60+ species in the order of birds
and turonian is the evolutionary era of the specific genera.

In the example in Table 7, the query has items selected from the “topical type” movie
genres, where four of the items belong to the “category” horror film, while the intruder item
‘Children of Men’ belongs to the “category” science fiction film. In this example, EVE identifies
the wrong intruder item according to the ground truth, recommending instead the item ‘Final
Destination (film)’. From the explanation in the table, it becomes clear why the model made
this recommendation. We observe that the non-intruder items have a coherent relationship
with ‘post-apocalyptic films’ and ‘films based on science fiction novels’ (both ‘I am Legend

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 15

Table 6: Sample explanation generated for the intruder detection task, for the
query: {Hawk, Penguin, Gull, Parrot, Snake}. Correct intruder detected: Snake.
All top-9 features are Wikipedia categories except for those beginning with ‘↵:’
which correspond to Wikipedia articles.

Non-Intruder Intruder
falconiformes turonian first appearances
birds of prey snakes
seabirds squamata
ypresian first appearances predators
psittaciformes lepidosaurs
parrots predation
rupelian first appearances carnivorous animals
gulls ↵:snake
bird families venomous snakes

Table 7: Sample explanation generated for the intruder detection task, for the
query: {I Am Legend (film), Insidious (film), A Nightmare on Elm Street, Final
Destination (film), Children of Men}. Incorrect intruder detected: Final Destina-
tion (film). All top-9 features are Wikipedia categories.

Non-Intruder Intruder
english-language films studiocanal films
american independent films splatter films
american horror films final destination films
universal pictures films films shot in vancouver
post-apocalyptic films films shot in toronto
films based on science fiction novels films shot in san francisco, california
2000s science fiction films films set in new york
ghost films films set in 1999
films shot in los angeles, california film scores by shirley walker

(film)’ and ‘Children of Men’ belong to these categories). Whereas ‘Final Destination (film)’
was recommended by the model based on features relating to filming location. A key advantage
of having an explanation from the model is that it allows us to understand why a mistake occurs
and how we might improve the model. In this case, one way to make improvement might be
to add a rule filtering Wikipedia categories relating to locations when consider movie genres.

4.3.2 Experiment 2: Ability to cluster

In this experiment, we evaluate the extent to which the distances computed on EVE embed-
dings can help to group semantically-related items together, while keeping unrelated items
apart. This is a fundamental requirement for distance-based methods for cluster analysis.

Task definition: For all items in a specific “topical type”, we construct an embedding space
without using information about the category to which the items belong. The purpose is then
to measure the extent to which these items cluster together in the space relative to the ground
truth categories. This is done by measuring distances in the space between items that should
belong together (i.e. intra-cluster distances) and items that should be kept apart (i.e. inter-
cluster distances), as determined by the categories. Since there are seven “topical types”, there
are also seven queries in this task.

Example of a query: For the “topical type” Cuisine, we are provided with a list of 100 items
in total, where each of the five categories has 20 items. These correspond to cuisine items from

16 M. Atif Qureshi, Derek Greene

Table 8: Ability to cluster task (Comparison between EVE and word embedding
algorithms) — Mean within-cluster distance scores.

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 2.00 13.03 6.23 10.31 7.71 12.20
Continent to country 2.34 2.63 2.25 2.83 2.56 2.60
Cuisine 2.92 17.31 8.88 9.74 6.25 12.36
European cities 3.13 7.72 5.46 8.30 5.75 6.86
Movie genres 6.92 11.98 6.04 9.81 5.61 17.96
Music genres 1.90 8.25 5.25 6.72 5.77 7.72
Nobel laureates 2.88 14.56 8.99 12.40 10.59 15.13
Average 3.16 10.78 6.16 8.59 6.32 10.69

five different countries. The idea is to measure the ability of each embedding model to cluster
these 100 items back into five categories.

Strategy: To formally measure the ability of a model to cluster items, we conduct a two-step
strategy as follows:

1. Calculate a pairwise similarity matrix between all items of a given “topical type”. The
similarity function that we use for this task is the cosine similarity.

2. Transform the similarity matrix to a distance matrix8 which is used to measure inter and
intra-cluster distances relative to the ground truth categories.

Results: To evaluate the ability to cluster, there are typically two objectives: within-cluster
cohesion and between-cluster separation. To this end, we use three well-known cluster validity
measures in this task. Firstly, the within-cluster distance (Everitt et al 2001) is the total of
the squared distances between each item xi and the centroid vector µc of the cluster Cc to
which it has been assigned:

within =
kX

c=1

X

xi2Cc

d(xi, µc)
2 (5)

Typically this value is normalized with respect to the number of clusters k. The lower the
score, the more coherent the clusters. Secondly, the between-cluster distance is the total of
the squares of the distances between the each cluster centroid and the centroid of the entire
dataset, denoted µ̂:

between =
kX

c=1

|Cc| d(µc, µ̂)
2 where µ̂ =

1

n

nX

i=1

xi (6)

This value is also normalized with respect to the number of clusters k. The higher the score,
the more well-separated the clusters. Finally, the two above objectives are combined via the
CH-Index (Caliński and Harabasz 1974), using the ratio:

CH =
between/(k � 1)

within/(n� k)
(7)

The higher the value of this measure, the better the overall clustering.
From Table 8, we can see that EVE generally performs better than rest of the embedding

methods for the within-cluster measure. Similarly, Table 9 shows better performance of EVE
when compared with another knowledge-powered embedding method, namely “retrofitting”. In

8 by simply, 1 - normalized similarity score over each dimension

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 17

Table 9: Ability to cluster task (Comparison between EVE and retrofitted word
vectors) — Mean within-cluster distance scores.

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 2.00 13.07 6.10 10.89 7.38 15.26
Continent to country 2.34 2.62 2.25 2.82 2.55 2.56
Cuisine 2.92 17.33 8.76 10.49 6.41 16.59
European cities 3.13 7.92 5.96 8.29 6.34 7.62
Movie genres 6.92 10.55 5.31 6.26 5.44 13.88
Music genres 1.90 8.49 5.38 7.31 5.72 8.79
Nobel laureates 2.88 13.09 8.22 10.94 9.79 14.85
Average 3.16 10.44 6.00 8.14 6.23 11.36

Table 10: Ability to cluster task (Comparison between EVE and word embedding
algorithms) — Mean between-cluster distance scores.

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 0.47 1.30 0.74 1.14 1.13 0.46
Continent to country 3.33 3.86 1.78 4.08 2.83 1.63
Cuisine 8.18 2.12 2.12 14.52 10.80 0.88
European cities 2.39 17.14 7.45 13.24 10.86 3.84
Movie genres 1.58 0.40 0.18 0.41 0.18 0.48
Music genres 2.23 2.79 1.60 1.16 1.38 1.68
Nobel laureates 1.95 0.79 0.39 0.56 0.55 0.20
Average 2.88 4.06 2.04 5.02 3.96 1.31

Table 11: Ability to cluster task (Comparison between EVE and retrofitted word
vectors) — Mean between-cluster distance scores.

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 0.47 1.30 0.76 1.05 1.11 0.52
Continent to country 3.33 3.94 1.80 4.07 2.86 1.57
Cuisine 8.18 2.11 2.08 17.15 11.16 1.41
European cities 2.39 13.97 5.46 10.00 7.97 2.97
Movie genres 1.58 0.39 0.17 0.19 0.16 0.42
Music genres 2.23 2.58 1.27 1.64 1.25 1.96
Nobel laureates 1.95 0.89 0.44 0.62 0.59 0.25
Average 2.88 3.59 1.71 4.96 3.59 1.30

Tables 10 and 11, for the between-cluster measure, EVE is outperformed by FastText CBOW,
Word2Vec CBOW, and FastText SG mainly due to the “topical type” Cuisine and European
cities where EVE does not perform well. Finally, in Tables 12 and 13 where the combined aim
of clustering is captured through the CH-Index, EVE outperforms the rest of the methods,
except in the case of the “topical type” European cities.

Explanation from the EVE model: Using labeled dimensions from the EVE model, we
define a similar strategy for explanation as used in the previous task. However, now instead of

18 M. Atif Qureshi, Derek Greene

Table 12: Ability to cluster task (Comparison between EVE and word embedding
algorithms) — Overall CH-Index validation scores.

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 7.64 5.98 4.09 3.91 4.44 5.46
Continent to country 15.83 11.84 8.19 13.69 12.29 7.52
Cuisine 54.18 2.38 3.51 14.25 16.00 2.23
European cities 29.08 48.57 28.98 33.73 41.88 15.53
Movie genres 12.45 1.36 1.43 1.51 1.87 1.27
Music genres 25.04 18.01 14.80 13.06 12.93 6.09
Nobel laureates 21.85 3.58 3.34 1.73 3.16 2.91
Average 23.72 13.10 9.19 11.70 13.22 5.86

Table 13: Ability to cluster task (Comparison between EVE and retrofitted word
vectors) — Overall CH-Index validation scores.

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 7.64 5.85 4.32 3.83 4.49 5.99
Continent to country 15.83 12.02 8.27 13.72 12.23 7.30
Cuisine 54.18 2.23 3.58 16.24 15.84 2.27
European cities 29.08 40.60 21.27 26.86 29.69 13.49
Movie genres 12.45 1.32 1.28 1.27 1.54 1.04
Music genres 25.04 6.09 16.91 13.29 11.67 11.33
Nobel laureates 21.85 3.97 3.72 3.60 3.52 3.00
Average 23.72 11.86 7.96 11.02 11.23 5.45

discovering an intruder item, the goal is to define categories from items and to define the overall
space. Algorithm 2 shows the strategy which requires three inputs: the vectorspace representing
the entire embedding; the list of categories categories; the categories_vectorspace which is
the vector space of items belonging to each category. In step 1, we calculate the mean vector
representing the entire space. In step 2, we order the labeled dimensions of the mean vector by
their informativeness. In steps 3–6 we iterate over the list of categories (of a “topical type” such
as Cuisine) and calculate mean vector for each category’s vector space, which is followed by
the ordering of dimensions of the mean vector of category vector space by the informativeness.
Finally, we return the most informative features of the entire space and of each category’s
vector space.

Algorithm 2 Explanation strategy for the ability to cluster task.
Require: EVE ! vectorspace, categories, categories_vectorspace

1: spacemean = Mean(vectorspace)
2: spaceinfo_features = order_byinfo_features(spacemean)
3: for category 2 categories do
4: categorymean = Mean(categories_vectorspace[category])
5: categoriesinfo_features[category] = order_byinfo_features(categorymean)
6: end for
7: return spaceinfo_features, categoriesinfo_features

Tables 14 and 15 show the explanations generated by the EVE model, in the cases where
the model performed best and worse against baselines respectively. In Table 14, the query is the

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 19

Table 14: Sample explanation generated for the ability to cluster task, for the
query:{items of “topical type” Cuisine}. All top-6 features are Wikipedia cate-
gories, except for those beginning with ‘↵:’ which correspond to Wikipedia articles.

Overall Italian Mexican Pakistani Swedish Vietnamese
space category category category category category
vietnamese italian mexican pakistani swedish vietnamese
cuisine cuisine cuisine cuisine cuisine cuisine
swedish cuisine tortilla- indian finnish vietnamese
cuisine of lombardy based cuisine cuisine words and

dishes phrases
mexican types of cuisine of indian ↵:swedish ↵:
cuisine pasta the south- desserts cuisine vietnamese

western cuisine
united states

italian pasta cuisine of pakistani desserts ↵:vietnam
cuisine the western breads

united states
dumplings dumplings ↵:list of iranian ↵:sweden ↵:gà n˜Ḯng sa

mexican breads
dishes

pakistani italian- maize pakistani potato ↵:thit kho
cuisine american dishes meat dishes tau

cuisine dishes

list of items from “topical type” cuisine. As can be seen from the bold entries in the table, the
explanation conveys the main idea about both the overall space and the individual categories.
For example, in the overall space, we can see the cuisines by different nationalities, and likewise
we can see the name of nationality from which the cuisine is originated from (e.g. Italian cuisine
for the “Italian category” and Pakistani breads for the “Pakistani category”). As for the non-
bold entries, we can also observe relevant features but at a deeper semantic level. For example,
cuisine of Lombardy in “Italian category” where Lombardy is a region in Italy, and likewise
tortilla-based dishes in the Mexican category where tortilla is a primary ingredient in Mexican
cuisine.

In Table 15, the query is the list of items from “topical type” European cities and this
is the example where EVE model performs worse. However, the explanation allows us to
understand why this is the case. As can been from the explanation table, the bold features show
historic relationships across different countries, such as “capitals of former nations”, “fortified
settlements”, and “Roman sites in Spain”. Similarly, it can also be observed in non-bold features
such as “former capital of Italy”. Based on this explanation, we could potentially decide to apply
a rule that would exclude any historical articles or categories when generating the embedding
for this type of task in future.

Visualization: Since scatter plots are often used to represent the output of a cluster analysis
process, we generate a visualization of all embeddings using T-SNE (Maaten and Hinton 2008),
which is a tool to visually represent high-dimensional data by reducing it to 2–3 dimensions
for presentation9. For the interest of reader, Fig. 4 shows a visualization generated using EVE
and GloVe when the list of items are selected from the “topical type” country to continent.
As can be seen from the plot, the ground truth categories exhibit better clustering behavior
when using the space from the EVE model, when compared to the Glove model. This is also
reflected in the corresponding scores in Tables ??, ??, and ??.

4.3.3 Experiment 3: Sorting relevant items first

Task definition: The objective of this task is to rank a list of items based on their relevance
to a given query item. According to the ground truth associated with our dataset, items which

9 The full set of experimental visualizations is available at http://mlg.ucd.ie/eve/

20 M. Atif Qureshi, Derek Greene

Table 15: Sample explanation for the ability to cluster task, for the query: {items
of “topical type” European cities}. All top-6 features are Wikipedia categories.

Overall France Great Germany Italy Spain
space category Britain category category category

category
prefectures prefectures articles university world university
in france in france including towns in heritage towns in

recorded germany sites in spain
pronuncia- italy
tions (uk
english)

university port cities county towns members mediterra- populated
towns in and towns in england of the nean port coastal
germany on the fren- hanseatic cities and places in

ch atlantic league towns in spain
coast italy

members cities in metropolitan german populated roman
of the france boroughs state coastal sites in
hanseatic capitals places in spain
league italy
articles subpre- university cities in cities and port cities
including fectures towns in the north rhine- towns in and towns
recorded in france united westphalia emilia on the
pronuncia- kingdom romagna spanish
tions (uk atlantic coast
english) coast
capitals world populated rhine former tourism
of former heritage places province capitals in spain
nations sites in established of italy

france in the 1st
century

german communes fortified populated capitals mediterranean
state of nord settlements places on of former port cities
capitals (french the rhine nations and towns in

department) spain

(a) EVE model (b) GloVe model

Fig. 4: Visualizations of model embeddings generated for the ability to cluster task,
for the query: {items of “topical type” Country to Continent}. Colors and shapes
indicate items belonging to different ground truth categories.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 21

belong to the same ‘category’ of “topical type” as the query should be ranked above items
which do not belong that ‘category’ (i.e. they are irrelevant to the query). In this task the
total number of queries is equal to the total number of categories in the dataset – i.e. 36 (see
table 1).

Example of a query: Unlike the previous tasks, here ‘category’ is used as a query in this
task. For example, for the ‘category’ Nobel laureates in Physics, the task is to sort all items
from “topical type” Nobel laureates such that the list of items from ‘category’ Nobel laureates
in Physics are ranked ahead of the rest of the items. Thus, Niels Bohr, who is a laureate in
Physics, should appear near the top of the ranking, unlike Elihu Root, who is a prize winner
in Peace.

Strategy: In order to sort items relevant to a category, we define a simple two-step strategy
as follows:
1. Calculate similarity between all items and a category belonging to “topical type” in the

model space. The similarity function used for this task is the cosine similarity.
2. Sort the list of items in descending order according to their similarity scores with the

category.
Based on this strategy, a successful model should rank items with the same ‘category’ before
irrelevant items.

Results: We use precision-at-k (P@k) and average precision (AP) (Manning et al 2008) as
the measures to evaluate the effectiveness of the sorting ability of each embedding model
with respect to relevance of items to a category. P@k captures how many relevant items are
calculated at a certain rank (or in the top�k results), while AP captures how early a relevant
item is retrieved on average. It may happen that two models have the same value of P@k,
while one of the models retrieves relevant items in an earlier order of rank, thus achieving a
higher AP value. P@k is defined as the ratio of relevant items retrieved in the top�k retrieved
items, whereas AP is the average of P@k values computed after each relevant item is retrieved.
Equations 8 and 9 show the formal definitions of both measures.

P@k =
| ItemsRelevant |
| ItemsTop-k |

(8)

AP =
1

| ItemsRelevant |

|Items|X

k=1

P@k · rel(k) (9)

where rel(k) =

⇢
1, if item(k) is relevant
0, otherwise

Tables 16 and 17 show the experimental results of the sorting relevant items first task
for the measure P@20 where we choose k = 20, since on average there are 20 items in each
category in the dataset. Tables 18 and 19 show the experimental results of the sorting relevant
items first task for the measure AP . It can be seen from the tables that the EVE model
generally outperforms the rest of models, except for the “topical type” European cities. On
average, the EVE model outperforms the second best algorithm by a factor of 1.8 and 1.67
times in terms of P@k and AP respectively. In the next section, we show the corresponding
explanations generated by the EVE model for this task.

Explanation from the EVE model: Using the labeled dimensions provided by the EVE
model, we define a strategy for generating explanations for the sorting relevant items first
task in Algorithm 3. The strategy requires three inputs. The first is the vectorspace which is
composed of category vector and item vectors. The second input is the Simwrt_category which
is a column matrix, composed of similarity score between the category vector with itself and
item vectors. In this matrix the first entry is 1.0 because of the self similarity of the category
vector. The final input is a list of items items. In the step 1 and 2, a weighted mean vector
of space is calculated, where the weights are the similarity scores between the vectors in the

22 M. Atif Qureshi, Derek Greene

Table 16: Sorting relevant items first task (Comparison between EVE and word
embedding algorithms) – Precision (P@20) scores.

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 0.72 0.34 0.38 0.41 0.47 0.22
Continent to country 0.95 0.54 0.51 0.63 0.59 0.31
Cuisine 0.97 0.36 0.49 0.51 0.54 0.24
European cities 0.91 0.85 0.91 0.86 0.96 0.61
Movie genres 0.87 0.30 0.31 0.24 0.29 0.24
Music genres 0.90 0.33 0.30 0.28 0.37 0.21
Nobel laureates 0.99 0.27 0.22 0.20 0.25 0.20
Average 0.90 0.43 0.45 0.45 0.50 0.29

Table 17: Sorting relevant items first task (Comparison between EVE and
retrofitted word vectors) – Precision (P@20) scores.

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 0.72 0.30 0.40 0.39 0.46 0.24
Continent to country 0.95 0.55 0.52 0.64 0.62 0.31
Cuisine 0.97 0.37 0.47 0.55 0.53 0.24
European cities 0.91 0.80 0.87 0.79 0.89 0.59
Movie genres 0.87 0.31 0.30 0.29 0.33 0.26
Music genres 0.90 0.30 0.29 0.28 0.31 0.21
Nobel laureates 0.99 0.24 0.22 0.22 0.24 0.20
Average 0.90 0.41 0.44 0.45 0.48 0.29

Table 18: Sorting relevant items first task (Comparison between EVE and word
embedding algorithms) – Average Precision (AP) scores.

EVE Word2Vec Word2Vec FastText FastText GloVe
CBOW SG CBOW SG

Animal class 0.72 0.38 0.42 0.45 0.52 0.27
Continent to country 0.92 0.55 0.54 0.65 0.67 0.33
Cuisine 0.99 0.39 0.58 0.51 0.59 0.27
European cities 0.91 0.91 0.97 0.93 0.99 0.65
Movie genres 0.88 0.32 0.35 0.29 0.34 0.29
Music genres 0.91 0.35 0.34 0.33 0.40 0.29
Nobel laureates 1.00 0.26 0.26 0.24 0.29 0.24
Average 0.90 0.45 0.49 0.49 0.54 0.33

space and the category vector. In steps 3–6, we iterate over the list of items and calculate the
product between the weighted mean vector of the space and the item vector. After taking the
product, we order the dimensions by the informativeness. Finally, we return the ranked list of
informative features for each item.

Tables 20 and 21 show sample explanations generated by the EVE model. For illustration
purposes we select the “topical types” Nobel laureates and Music genres for explanations, as
these are the only remaining “topical types” which we have not looked at so far in the other
tasks.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 23

Table 19: Sorting relevant items first task (Comparison between EVE and
retrofitted word vectors) – Average Precision (AP) scores.

Retro Retro Retro Retro Retro
EVE Word2Vec Word2Vec FastText FastText GloVe

CBOW SG CBOW SG
Animal class 0.72 0.36 0.42 0.44 0.51 0.28
Continent to country 0.92 0.58 0.55 0.65 0.68 0.33
Cuisine 0.99 0.40 0.55 0.55 0.61 0.26
European cities 0.91 0.87 0.92 0.88 0.94 0.63
Movie genres 0.88 0.31 0.34 0.31 0.33 0.30
Music genres 0.91 0.32 0.34 0.34 0.36 0.28
Nobel laureates 1.00 0.24 0.25 0.26 0.25 0.27
Average 0.90 0.44 0.48 0.49 0.52 0.34

Algorithm 3 Explanation strategy for sorting relevant items first task
Require: EVE ! vectorspace, Simwrt_category , items

1: BiasedSpace = vectorspace ⇥ Simwrt_category

2: BiasedSpacemean = Mean(BiasedSpace)
3: for item 2 items do
4: itemprojection = BiasedSpacemean ⇥ vectorspace[item]T

5: itemsinfo_features[item] = order_byinfo_features(itemprojection)
6: end for
7: return itemsinfo_features

Table 20: Sample explanation for the sorting relevant items first task, for the query:
{Nobel laureates in Chemistry}. All top-6 features are Wikipedia categories.

Kurt Alder (Chemistry) Linus Pauling (Peace)
First correct found at #1 First incorrect found at #20
nobel laureates in chemistry nobel laureates in chemistry
german nobel laureates Guggenheim fellows
organic chemists american nobel laureates
university of kiel faculty national medal of science laureates
university of kiel alumni american physical chemists
university of cologne faculty american people of scottish descent

In Table 20, the query is ‘category’ Nobel laureates in Chemistry from the “topical type”
nobel laureates. We show the informative features for two cases – the first correct result which
appears at rank 1 in the sorted lists produced by EVE, and the first incorrect result which
appears at rank 20. The bold features indicates that both individuals are Nobel laureates in
Chemistry. However, Linus Pauling also appears to be associated with the Peace category.
This reflects that fact that, in fact, Linus Pauling is a two time Nobel laureate in two different
categories, Chemistry and Peace. While generating the dataset used in our evaluations, the
annotators randomly selected items to belong to a category from the full set of available items,
without taking into account occasional cases where an item may belong into two categories.
This case highlights the fact that EVE explanations are meaningful and can inform the choices
made by human annotators.

In Table 21, the query is ‘category’ Classical music from the “topical type” music genres.
We see that the first correct result is observed at rank 1 and the first incorrect result is at rank
18. The bold features show that both individuals are associated with classical music. Looking
at the biography of the musician Herbie Hancock more closely, we find that he received an
education in classical music and he is also well known in the classical genre, although not as

24 M. Atif Qureshi, Derek Greene

Table 21: Sample explanation for the sorting relevant items first task, for the
query: {Classical music}. All top-6 features are Wikipedia categories except those
beginning with ‘↵:’ which are Wikipedia articles.

Ludwig van Beethoven (Classical) Herbie Hancock (Jazz)
First correct found at #1 First incorrect found at #18
romantic composers 20th-century american musicians
19th-century classical composers ↵:classical music
composers for piano american jazz composers
german male classical composers grammy award winners
german classical composers ↵:herbie hancock
19th-century german people american jazz bandleaders

strongly as he is known for Jazz music. This again goes to show that explanations generated
using the EVE model are insightful and can support the activity of manual annotators.

4.4 Discussion on Explanation

The explanations generated by the EVE model makes use of the literal interpretation of the
features that derive required conclusion such as similarity/dissimilarity between two concepts.
It is important to note that these explanations are not composed of sentences or paragraphs
which is beyond the scope of this work. The intuition behind the EVE model’s explanation
is to keep features annotated with simple readable terms that another customised interface
(or a product that uses the EVE model) can exploit to generate sentences and other forms of
textual summaries as an explanation for the required task.

5 Conclusion and Future Directions

In this contribution, we presented a novel technique, EVE, for generating vector representations
of words using information from Wikipedia. This work represents a first step in the direction of
explainable word embeddings, where the core of this interpretability lies in the use of labeled
vector dimensions corresponding to either Wikipedia categories or Wikipedia articles. We
have demonstrated that, not only are the resulting embeddings useful for fundamental data
mining tasks, but the provision of labeled dimensions readily supports the generation of task-
specific explanations via simple vector operations. We do not argue that embeddings generated
on structured data, such as those produced by the EVE model, would replace the prevalent
existing word embedding models. Rather, we have shown that using structured data can provide
additional benefits beyond those afforded by existing approaches. An interesting aspect to
consider in future would be the use of hybrid models, generated on both structured data and
unstructured text, which could still retain aspects of explanations as proposed in this work.

In future, we would like to investigate the effect of the popularity of a word or concept
(i.e. the number of non-zero dimensions in the embedding). For example, a cuisine-related item
might have fewer non-zero dimensions when compared to a country-related item. Similarly, an
interesting direction might be to analyze embedding spaces and sub-spaces to learn more about
correlations of dimensions, while addressing a task or the effects of dimensionality reduction
(even though spaces may be sparse). Another interesting avenue for future work could be to
explore different ways of generating task-specific explanations, and to investigate how these
explanations might be presented effectively to a user. Finally, the EVE model can also be
evaluated on different subsets of Wikipedia and tuned according to the needs of different
domains such as industrial needs (manufacturing engineering, financial engineering, designs
choices), academic topics (interdisciplinary areas), political ideas (difference and coherences).

Acknowledgements. This publication has emanated from research conducted with the sup-
port of Science Foundation Ireland (SFI), under Grant Number SFI/12/ RC/2289.

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 25

References

Adler P, Falk C, Friedler SA, Rybeck G, Scheidegger C, Smith B, Venkatasubramanian S
(2016) Auditing black-box models for indirect influence. In: Data Mining (ICDM), 2016
IEEE 16th International Conference on, IEEE, pp 1–10

Agirre E, Soroa A (2009) Personalizing pagerank for word sense disambiguation. In: Proceed-
ings of the 12th Conference of the European Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics, pp 33–41

Arora S, Li Y, Liang Y, Ma T, Risteski A (2016) A latent variable model approach to pmi-based
word embeddings. Tr Assoc Computational Linguistics 4:385–399

Baroni M, Lenci A (2010) Distributional memory: A general framework for corpus-based se-
mantics. Computational Linguistics 36(4):673–721

Baroni M, Dinu G, Kruszewski G (2014) Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vectors. In: ACL (1), pp 238–247

Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model.
JMLR 3(Feb):1137–1155

Bhargava P, Phan T, Zhou J, Lee J (2015) Who, what, when, and where: Multi-dimensional
collaborative recommendations using tensor factorization on sparse user-generated data.
In: Proceedings of the 24th International Conference on World Wide Web, ACM, pp 130–
140

Bian J, Gao B, Liu TY (2014) Knowledge-powered deep learning for word embedding. In:
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, pp 132–148

Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword
information. arXiv preprint arXiv:160704606

Bordes A, Weston J, Collobert R, Bengio Y (2011) Learning structured embeddings of knowl-
edge bases. In: Conference on artificial intelligence, EPFL-CONF-192344

Budanitsky A, Hirst G (2006) Evaluating wordnet-based measures of lexical semantic related-
ness. Computational Linguistics 32(1):13–47

Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods 3(1):1–27

Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep
neural networks with multitask learning. In: Proc. ICML’2008, ACM, pp 160–167

Datta A, Sen S, Zick Y (2016) Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In: Security and Privacy (SP), 2016 IEEE
Symposium on, IEEE, pp 598–617

Deerwester S (1988) Improving information retrieval with latent semantic indexing. In: Pro-
ceedings of the 51st Annual Meeting of the American Society for Information Science 25,
pp 36–40

Diao Q, Qiu M, Wu CY, Smola AJ, Jiang J, Wang C (2014) Jointly modeling aspects, ratings
and sentiments for movie recommendation (jmars). In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, ACM, pp
193–202

Diaz F, Mitra B, Craswell N (2016) Query expansion with locally-trained word embeddings.
In: Association for Computational Linguistics, pp 367–377

Everitt B, Landau S, Leese M (2001) Cluster Analysis. Hodder Arnold Publication, Wiley
Faruqui M, Dodge J, Jauhar SK, Dyer C, Hovy E, Smith NA (2014) Retrofitting word vectors

to semantic lexicons. arXiv preprint arXiv:14114166
Firth J (1957) A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis pp 1–32
Fu X, Wang T, Li J, Yu C, Liu W (2016) Improving distributed word representation and

topic model by word-topic mixture model. In: Proceedings of The 8th Asian Conference
on Machine Learning, pp 190–205

Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In: Proc. IJCAI’07, vol 7, pp 1606–1611

Gallant SI, Caid WR, Carleton J, Hecht-Nielsen R, Qing KP, Sudbeck D (1992) Hnc’s match-
plus system. In: ACM SIGIR Forum, ACM, vol 26, pp 34–38

Ganguly D, Roy D, Mitra M, Jones GJ (2015) Word embedding based generalized language
model for information retrieval. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, pp 795–798

26 M. Atif Qureshi, Derek Greene

Ganitkevitch J, Van Durme B, Callison-Burch C (2013) Ppdb: The paraphrase database. In:
HLT-NAACL, pp 758–764

Globerson A, Chechik G, Pereira F, Tishby N (2007) Euclidean embedding of co-occurrence
data. JMLR 8(Oct):2265–2295

Goodman B, Flaxman S (2016) European union regulations on algorithmic decision-making
and a" right to explanation". arXiv preprint arXiv:160608813

Gyöngyi Z, Garcia-Molina H, Pedersen J (2004) Combating web spam with trustrank. In:
Proceedings of the Thirtieth international conference on Very large data bases-Volume 30,
VLDB Endowment, pp 576–587

Harris ZS (1954) Distributional structure. Word 10(2-3):146–162
Harris ZS (1968) Mathematical Structures of Language. John Wiley & Sons, New York
Henelius A, Puolamäki K, Boström H, Asker L, Papapetrou P (2014) A peek into the black box:

exploring classifiers by randomization. Data mining and knowledge discovery 28(5-6):1503
Hoffart J, Seufert S, Nguyen DB, Theobald M, Weikum G (2012) Kore: Keyphrase overlap

relatedness for entity disambiguation. In: Proc. 21st ACM International Conference on
Information and Knowledge Management, pp 545–554

Hunt J, Price C (1988) Explaining qualitative diagnosis. Engineering Applications of Artificial
Intelligence 1(3):161–169

Jarmasz M (2012) Roget’s thesaurus as a lexical resource for natural language processing.
arXiv preprint arXiv:12040140

Jiang Y, Zhang X, Tang Y, Nie R (2015) Feature-based approaches to semantic similarity
assessment of concepts using wikipedia. Info Processing & Management 51(3):215–234

Kuzi S, Shtok A, Kurland O (2016) Query expansion using word embeddings. In: Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management,
ACM, pp 1929–1932

Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis. Dis-
course processes 25(2-3):259–284

Levy O, Goldberg Y (2014) Neural word embedding as implicit matrix factorization. In: Proc.
NIPS’2014, pp 2177–2185

Levy O, Goldberg Y, Ramat-Gan I (2014) Linguistic regularities in sparse and explicit word
representations. In: CoNLL, pp 171–180

Levy O, Goldberg Y, Dagan I (2015) Improving distributional similarity with lessons learned
from word embeddings. Tr Assoc Computational Linguistics 3:211–225

Lipton ZC (2016) The mythos of model interpretability. arXiv preprint arXiv:160603490
Liu Y, Liu Z, Chua TS, Sun M (2015) Topical word embeddings. In: AAAI, pp 2418–2424
Lopez-Suarez A, Kamel M (1994) Dykor: a method for generating the content of explanations

in knowledge systems. Knowledge-based Systems 7(3):177–188
Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. JMLR 9(Nov):2579–2605
Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge

University Press, New York, NY, USA
Metzler D, Dumais S, Meek C (2007) Similarity measures for short segments of text. In:

European Conference on Information Retrieval, Springer, pp 16–27
Mihalcea R, Tarau P (2004) Textrank: Bringing order into text. In: Proceedings of the 2004

conference on empirical methods in natural language processing
Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations

in vector space. arXiv preprint arXiv:13013781
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of

words and phrases and their compositionality. In: Proc. NIPS’2013, pp 3111–3119
Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G (2015) Pharmacovigilance from social

media: mining adverse drug reaction mentions using sequence labeling with word embed-
ding cluster features. Journal of the American Medical Informatics Association 22:671–681

Niu L, Dai X, Zhang J, Chen J (2015) Topic2vec: learning distributed representations of topics.
In: Asian Language Processing (IALP), 2015 International Conference on, IEEE, pp 193–
196

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order
to the web. Tech. rep., Stanford InfoLab

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation.
In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543

Qureshi MA (2015) Utilising wikipedia for text mining applications. PhD thesis, National
University of Ireland Galway

EVE: Explainable Vector Based Embedding Technique Using Wikipedia 27

Ren Z, Liang S, Li P, Wang S, de Rijke M (2017) Social collaborative viewpoint regression with
explainable recommendations. In: Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, ACM, pp 485–494

Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?: Explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, pp 1135–1144

Salton G, McGill MJ (1986) Introduction to Modern Information Retrieval. McGraw-Hill, Inc.,
New York, NY, USA

Sari Y, Stevenson M (2016) Exploring word embeddings and character n-grams for author
clustering. In: Working Notes. CEUR Workshop Proceedings, CLEF

Schütze H (1992) Word space. In: Proc. NIPS’1992, pp 895–902
Sherkat E, Milios EE (2017) Vector embedding of wikipedia concepts and entities. In: Interna-

tional Conference on Applications of Natural Language to Information Systems, Springer,
pp 418–428

Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for
knowledge base completion. In: Proc. NIPS’2013, pp 926–934

Strube M, Ponzetto SP (2006) Wikirelate! computing semantic relatedness using wikipedia.
In: Proc. 21st national conference on Artificial intelligence, pp 1419–1424

Tintarev N, Masthoff J (2015) Explaining recommendations: Design and evaluation. In: Rec-
ommender Systems Handbook, Springer, pp 353–382

Wang P, Xu B, Xu J, Tian G, Liu CL, Hao H (2016) Semantic expansion using word embed-
ding clustering and convolutional neural network for improving short text classification.
Neurocomputing 174:806–814

Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph and text jointly embedding. In:
EMNLP, Citeseer, vol 14, pp 1591–1601

Wick MR, Thompson WB (1992) Reconstructive expert system explanation. Artificial Intelli-
gence 54(1-2):33–70

Witten I, Milne D (2008) An effective, low-cost measure of semantic relatedness obtained from
wikipedia links. In: AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving
Synergy, pp 25–30

Wu F, Song J, Yang Y, Li X, Zhang ZM, Zhuang Y (2015) Structured embedding via pairwise
relations and long-range interactions in knowledge base. In: AAAI, pp 1663–1670

Xu C, Bai Y, Bian J, Gao B, Wang G, Liu X, Liu TY (2014) Rc-net: A general framework
for incorporating knowledge into word representations. In: Proc. 23rd ACM International
Conference on Conference on Information and Knowledge Management, pp 1219–1228

Yeh E, Ramage D, Manning CD, Agirre E, Soroa A (2009) Wikiwalk: random walks on
wikipedia for semantic relatedness. In: Proc. 2009 Workshop on Graph-based Methods
for Natural Language Processing, pp 41–49

Yu M, Dredze M (2014) Improving lexical embeddings with semantic knowledge. In: ACL (2),
pp 545–550

Zesch T, Gurevych I (2007) Analysis of the wikipedia category graph for nlp applications. In:
Proc. TextGraphs-2 Workshop (NAACL-HLT 2007), pp 1–8

Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y, Ma S (2014) Explicit factor models for explainable
recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th
international ACM SIGIR conference on Research & development in information retrieval,
ACM, pp 83–92

Zheng G, Callan J (2015) Learning to reweight terms with distributed representations. In: Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM, pp 575–584

Zuccon G, Koopman B, Bruza P, Azzopardi L (2015) Integrating and evaluating neural word
embeddings in information retrieval. In: Proceedings of the 20th Australasian Document
Computing Symposium, ACM, p 12

