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Abstract—Given the increasing popularity of algorithms for overlap-
ping clustering, in particular in social network analysis, quantitative
measures are needed to measure the accuracy of a method. Given a
set of true clusters, and the set of clusters found by an algorithm, these
sets of clusters must be compared to see how similar or different the sets
are. A normalized measure is desirable in many contexts, for example
assigning a value of 0 where the two sets are totally dissimilar, and 1
where they are identical.

A measure based on normalized mutual information, [1], has recently
become popular. We demonstrate unintuitive behaviour of this measure,
and show how this can be corrected by using a more conventional
normalization. We compare the results to that of other measures, such
as the Omega index [2].

A C++ implementation is available online. 1

In a non-overlapping scenario, each node belongs to exactly one
cluster. We are looking at overlapping, where a node could belong to
many communities, or indeed to no clusters. Such a set of clusters has
been referred to as a cover in the literature, and this is the terminology
that we will use.

For a good introduction to our problem of comparing covers of
overlapping clusters, see [2]. They describe the Rand index, which is
defined only for disjoint (non-overlapping) clusters, and then show
how to extend it to overlapping clusters. Each pair of nodes is
considered and the number of clusters in common between the pair
is counted. Even if a typical node is in many clusters, it’s likely that
a randomly chosen pair of nodes will have zero clusters in common.
These counts are calculated for both covers and the Omega index is
defined as the proportion of pairs for which the shared-cluster-count
is identical, subject to a correction for chance.

I. MUTUAL INFORMATION

Meila [3] defined a measure based on mutual information for
comparing disjoint clusterings. Lancichinetti et al. [1] proposed a
measure also based on mutual information, extended for covers.
This measure has become quite popular for comparing community
finding algorithms in social network analysis. It is this measure
we are primarily concerned with there, and we will refer to it as
NMILFKafter the authors’ initials.

We are proposing to use a different normalization to that used in
NMILFK , but first we will define the non-normalized measure which
is based very closely on that in NMILFK . You may want to compare
this to the final section of Lancichinetti et al. [1].

Given two covers, X and Y , we must first see how to measure the
similarity between a pair of clusters. X and Y are matrices of cluster
membership. There are n objects. The first cover has KX clusters,
and hence X is an n ×KX matrix. Y is an n ×KY matrix. Xim

tells us whether node m is in cluster i in cover X .
To compare cluster i of the first cover to cluster j of the second

cover, we compare the vectors Xi and Yj . These are vectors of ones
and zeroes denoting which clusters the node is in.

• a =
∑n

m=1[Xim = 0 ∧ Yjm = 0]
• b =

∑n
m=1[Xim = 0 ∧ Yjm = 1]

• c =
∑n

m=1[Xim = 1 ∧ Yjm = 0]
• d =

∑n
m=1[Xim = 1 ∧ Yjm = 1]

1https://github.com/aaronmcdaid/Overlapping-NMI
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Fig. 1. Mutual information and variation of information. The total
information H(X,Y ) = H(X|Y ) + I(X : Y ) +H(Y |X).

If a + d = n, and therefore b = c = 0, then the two vectors are
in complete agreement.

The lack of information between two vectors is defined:

H(Xi|Yj) =H(Xi, Yj)−H(Yj) (1)

=h(a, n) + h(b, n) + h(c, n) + h(d, n) (2)

− h(b+ d, n)− h(a+ c, n) (3)

where h(w, n) = −w log2
w
n

There is an interesting technicality here. Imagine a pair of clusters
but where the memberships have been defined randomly. There is a
possibility that there will be a small amount of mutual information,
even in the situation where the two vectors are negatively correlated
with each other. In extremis, if the two vectors are near complements
of each other, mutual information will be very high. We wish to
override this and define that there is zero mutual information in this
case. This is defined in equation (B.14) of [1]. We also use this
restriction in our proposal.

H∗(Xi|Yj) ={
H(Xi|Yj) if h(a, n) + h(d, n) ≥ h(b, n) + h(c, n)

h(c+ d, n) + h(a+ b, n) otherwise
(4)

This allows us to compare vectors Xi and Yj , but we want to
compare the entire matrices X and Y to each other. We will follow
the approximation used by [1] here and match each vector in X to
its best match in Y ,

H(Xi|Y ) = min
j∈{1,...KY }

H∗(Xi|Yj) (5)

then summing across all the vectors in X ,

H(X|Y ) =
∑

i∈{1,...KX}

H(Xi|Y ) (6)

H(Y |X) is defined in a similar way to H(X|Y ), but with the
roles reversed.

II. USEFUL IDENTITIES

fig. 1 gives us an easy way to remember the following useful
identities, which apply to any mutual information context.
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H(X) =I(X : Y ) +H(X|Y )

H(Y ) =I(X : Y ) +H(Y |X)

H(X,Y ) =H(X) +H(Y |X)

H(X,Y ) =H(Y ) +H(X|Y )

H(X,Y ) =

mutual information︷ ︸︸ ︷
I(X : Y ) +

variation of information︷ ︸︸ ︷
H(X|Y ) +H(Y |X)

The first two equalities give us two definitions for the mutual
information, I(X : Y ). In theory, these should be identical, but due
to the approximation used in eq. (5) they may be different. Therefore,
we will use the average of the two.

I(X : Y ) :=
1

2
[H(X)−H(X|Y ) +H(Y )−H(Y |X)] (7)

We are now ready to discuss normalization, contrasting the method
of [1] with our alternative.

Lancichinetti et al. [1] define their own normalization of the
variation of information,

1

2

(
H(X|Y )

H(X)
+

H(Y |X)

H(Y )

)
(8)

and hence their normalized mutual information is

NMILFK = 1− 1

2

(
H(X|Y )

H(X)
+

H(Y |X)

H(Y )

)
(9)

There are of course many ways to normalize a quantity such as the
variation of information. Normalization typically involves division by
a quantity c,

H(X|Y ) +H(Y |X)

c(X,Y )
(10)

where c is a function of X and Y which is guaranteed to be
greater than or equal to the numerator. But NMILFKdoes not use
a normalization of this standard form, instead using eq. (8).

There is another aspect to the non-standard normalization used
in NMILFK ; they insert an extra normalization factor into their
definition of H(Xi|Yj). But this is not the root cause of the problems
we will describe, hence we will not dwell on it. Our change is to
remove all the normalization steps from their analysis and instead
use a more conventional normalization of the form of eq. (10).

III. UNINTUITIVE BEHAVIOUR

There are circumstances where NMILFKoverestimates the similar-
ity of two clusters. We will show how an alternative normalization
will fix these problems.

Imagine a cover X , and we are comparing it to a cover Y . Further,
imagine Y has only one cluster (KY = 1) and this cluster is identical
to one of the clusters in X . For large KX , we would expect the
normalized mutual information to be quite low. An intuitive result
would be approximately 1

KX
.

However, NMILFK(X,Y ) will be at least 0.5 in cases like this.
This is because H(Y |X) will be zero bits (the single cluster in Y
can be encoded with zero bits because it has a perfect match among
the clusters of X) and this will result in a contribution of 0.5 to the
NMILFK .

The other problematic example involves the power set. There are
n objects in total. A cover involving every subset of the n objects
will create 2n − 1 clusters; we will ignore the empty subset. This is
the power set, which we denote as p(n).

NMILFK(X, p(n)) will again be slightly greater than 0.5. This is
because every cluster in X will have a perfect match in p(n) and
this will result in H(X|p(n)) = 0.

In both these examples NMILFK gives a score slightly above 0.5.
The intuitive behaviour in these cases would be for a similarity score
close to 0. We will demonstrate this behaviour in our experiments in
section V

When we remove the normalization from NMILFK , and instead
use a more conventional normalization strategy eq. (10), we will find
more intuitive behaviour.

IV. NORMALIZATION
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Fig. 2. As more communities are found, the scores of NMILFKand NMImax

increase. For a small number of communities found, the intuitive result is a
small value, and this is the behaviour of our proposed measure.

Typically a normalization will involve a simple division of the
absolute quantity by a quantity which is gauranteed to be an upper
bound, giving us a number between zero and one.

The following sequence of inequalities from Vinh et al. [4] provide
possibilities for normalization.

I(X : Y ) ≤min(H(X), H(Y ))

≤
√

H(X), H(Y )

≤1

2
(H(X) +H(Y ))

≤max(H(X), H(Y ))

≤H(X,Y )

(11)

Any of the five expressions on the right can be used, and [4]
suggest a measure based on max(H(X), H(Y )). The Normalized
Information Distance is recommended

dmax = 1− I(X,Y )

max(H(X), H(Y ))

where zero means perfect similarity and one means dissimilarity.
We want a measure with the opposite behaviour, so we’ll use the
corresponding normalized mutual information

NMImax =
I(X : Y )

max(H(X), H(Y ))
(12)
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where I(X : Y ) is as defined in eqs. (4) to (7)
This can also be understood with reference to fig. 1. The problem

with NMILFK arises when one cover is more complicated than the
other, for example if one cover has many more clusters than the other
cover. This corresponds to one circle in fig. 1 being much larger than
the other. In both the unintuitive examples mentioned in section III,
we will find that one of the circles will be much larger than the other
and that the overlap between the two circles will be quite large, almost
the full size of the smaller circle. As a result, one of the terms inside
the brackets in eq. (9) will be small and will bring the NMILFK to
0.5.

V. EVALUATION

See fig. 2. There are 200 nodes, divided into 20 communities. Each
community has 10 nodes and they do not overlap. We fix one of our
covers, X , to be the full set of twenty communities. Y contains a
subset of these communities. As we go from left to right, the number
of communities in Y increases from 1 to 20.

The communities in Y are perfect copies of communities in X .
Therefore, X = Y when all 20 communities are used. We see this
in fig. 2 at the right, where both measures report an NMI of 1.0.

This plot confirms the unintuitive behaviour of NMILFKwhen few
communities are found. On the left of the plot, when Y has only one
community, the score is 0.5.

The linear relationship of our NMImax, going from 0 to 1 as the
number of communities in Y increases, is intuitive.

VI. CONCLUSION

We have identified unintuitive behaviour in the version of NMI
proposed by [1] . We have identified the root cause of the behaviour
and shown how the use of a conventional normalization can lead to
more intuitive behaviour.

A simple experiment was performed to confirm the existence of the
unintuitive behaviour and demonstrate the more intuitive behaviour.

There are a variety of normalized measures to measure the similar-
ity of covers. There is no unique set of evaluation criteria to decide
on the best, but we suggest that our measure is the most intuitive
definition based on normalized mutual information.
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