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Abstract
Segmentation of bone regions allows for enhanced diagnostics, disease characterisation and treatment
monitoring inCT imaging. In contrast enhancedwhole-body scans accurate automatic segmentation
is particularly difficult as low dosewhole body protocols reduce image quality andmake contrast
enhanced regionsmore difficult to separate when relying on differences in pixel intensities. This paper
outlines aU-net architecturewith novel preprocessing techniques, based on thewindowing of training
data and themodification of sigmoid activation threshold selection to successfully segment bone-
bonemarrow regions from lowdose contrast enhancedwhole-bodyCT scans. The proposedmethod
achievedmeanDice coefficients of 0.979± 0.02, 0.965± 0.03, and 0.934± 0.06 on two internal
datasets and one external test dataset respectively.We have demonstrated that appropriate
preprocessing is important for differentiating between bone and contrast dye, and that excellent
results can be achievedwith limited data.

1. Introduction

1.1. Contrast Enhancement andWB-CTBone
Segmentation
In oncology, oncemetastasis from the primary tumour
site has occurred, or in bone specific cancers such as
MultipleMyeloma, the cancermaymanifest anywhere
in the skeletal system meaning only a scan along the
entire patient volume will ensure all potential sites are
captured [1–3].

The ability to automatically isolate the bone-bone
marrow (BBM) from the original scan allows for quicker,
more reliable diagnosis, enhanced therapies, interven-
tions and monitoring, as well as progressing the overall
clinical understanding of a condition through advanced
analytics [4] and insight into disease pathology [5].

Manual segmentation of a Whole Body Computed
Tomography (WB-CT) would be too time consuming
and a fast, accurate method of segmenting the BBM has
long been a focus of research in CT imaging. Initial
research focused on traditional image processing meth-
ods such as watershed [6], level sets / graph / cuts [7, 8],
deformable models [9–11], self organizing maps [12, 13]

and others [14, 15]. Human bones can take on a wide
variety of shapes, sizes, and compositions ranging from
long bones, such as the femur to irregular bones found in
the vertebral column or the skull. This makes the task of
WB bone segmentation particularly difficult when rely-
ingon any single traditional imageprocessingmethod.

More recently, Deep Learning (DL) techniques,
specifically Convolutional Neural Networks (CNNs),
have offered a solution to this complex problem, and
represent the method of choice for those with the
access to large image datasets, and the resources nee-
ded to label, train and test a CNNmodel [16–19].

Contrast Enhanced (CE) CT is routinely employed
in clinical practice as ameans of improving the soft tissue
visibility in a scan through the introduction of a contrast
agent into the body, such as iodine or barium [20]. The
relatively high density of contrast agents has the effect of
increasing the Hounsfield Unit (HU) of the region in
which they localize [21]. From a segmentation perspec-
tive, the presence of contrast in a scanmakes it more dif-
ficult to isolate BBM from a region where contrast has
localized as theHUwill fall in the range for BBM [22]. An
inverse relationship betweenCT tube voltage and change
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in HU has been identified [23] meaning the effects of
contrast are greater for low voltage scan protocols, such
as WB-CT. As such, segmentation of BBM in CE WB-
CT is a challenging task, where CNN-based techniques
are particularly useful.

1.2. CNNs for Segmentation
The main mechanism on which these networks operate
relies on producing a feature map from the convolution
operation that is carried out, along with activation and
pooling. This is applied at several stages in a network,with
a feature map generated at each stage. Higher levels of
abstraction are achieved with each successive layer, that is
from lines and edges to texture to specific objects [24]. In
the past decade, the improved computational efficiency of
GPU processing, in combination with the availability of
data, and the development of high level software for
development, has seen widespread application of CNNs
to solve medical imaging tasks such as disease classifica-
tion, object localisation, image registration, and semantic
segmentation [25].

The fully convolutional design of Ronneberger et alʼs
U-net [26]has beenwidely adopted by the research com-
munity as the architecture of choice for medical image
segmentation tasks. This design introduced the skip-con-
nection as part of an encoder-decoder network to enable
the original spatial resolution of the input image to be
retained, without the computational burden of previous
patch-based approaches [27, 28].

This design has demonstrated strong performance
with limited training data [29] and has been used for
organ segmentation [30], bone segmentation [17–19,
31, 32], lesion detection [33], and has also been mod-
ified to incorporate the 3-D nature of many medical
imagingmodalities [34, 35].

The goal of this research was to assess the perfor-
mance of the U-Net in bone segmentation for CE low
doseWB-CTusing a relatively small training dataset of
less than two thousand images.

2.Materials andMethods

The following section will provide details relating to
compilation of the training/testing dataset including
additional HU ranging preprocessing steps, as well as a
description of the U-net architecture used with
associated hyperparameters. The technique for selec-
tion of the threshold for the SigmoidActivation output
is also described as well as details of the metrics for
assessing theU-netmodels.

2.1. TrainingData
Prior to data collection the ethics process was followed
and approvals granted by the hospitalʼs research ethics
committee (Ref:1-378-1735-TMR). A dataset of 11
Positron Emission Tomography-CT (PET-CT) scans
(male= 6 and female= 5)was collated and anonymised.
Study inclusion criteria required patients to be over the

age of eighteen and to have no active underlying
conditions that would effect the BBM appearance on the
scan. This was verified through review of referrals,
clinical notes and the radiology reports.

Patients had a mean age of 55± 16 years and a
meanweight of 77± 12 kgs. PET-CT data was collated
as part of a larger study but only the CT component
was used for BBMsegmentation.

All scans were performed on the same Siemens Bio-
graph16PET-CT scanner betweenMay2014 andMarch
2017 using the same low dose WB helical scan protocol
with a 0.98 mm−1 pixel spacing, at 100 kVp, 512 x 512
size,mean exposure of 107± 23mAs and a 1.5mm slice
thickness. Seven of the scans were from the skull to the
proximal femur, and threewere from the skull to the feet.
The mean number of slices per scan was 718± 187 sli-
ces. All scans were CE through the use of oral barium
solution and/or intravenous (IV) iodinedye.

It has been observed that labelling every slice is an
inefficient approach for volumetricmedical data, since
neighbouring images contain practically identical
information [35]. In order to account for this, each
patient dataset was subsampled to select every 5th slice.
This reduced the amount of manual review/correc-
tion, while still retaining a large enough selection of
images to sufficiently capture the anatomical variance
of aWB scan.

2.1.1. TrainingData Labelling:
A typical single WB-CT scan may have over 900
individual axial slices to capture the entire patient
volume, each of which will require a corresponding label
for CNN training. The gold standard is manual delinea-
tion by a clinical expert [17, 19, 36–38], however given
the substantial quantity of data required for deep
learning, it is unfeasible to apply entirely manual
methods in labellingofBBMsegmentation images.

A solution to labelling vast numbers of images is to
first apply a standard automated approach such as hys-
teresis thresholding [39] with HU thresholds set at
Tupper= 400 and Tlower= 150 [40]. This is followed by
a series of morphological dilation, erosion, and fill
operations [41] to capture the low density marrow
regions. Finally, if any corrections are required this is
done as part of a manual review by an expert, see
figure 1. Matlabʼs [42] Image Segmenter application
with additional custom scripts was used for all data
labelling steps, as well as subsequent steps in training/
testing dataset creation, as described in section 2.1.4.

There were typical shortcomings of hysteresis thresh-
olding for BBM segmentation which were evident from
review and required correction. Firstly, the choice of
Tupper and Tlower results in retention of the patient table
andhead supportwhichwere removed viamethods simi-
lar to those outlined in [43, 44], seefigure 2(a). Secondly, a
morphological fill operation was necessary in order to
capture lower HU marrow regions in the segmentation.
However, this results in the skull vault and the spinal cord
being filled and included in the segmentation, see
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figure 2(a). Thirdly, the use of contrast dye [45] means
that soft tissues that would normally be outside the BBM
hysteresis threshold range are included in the segmenta-
tion, see figure 2(b). Finally, as shown in figure 2(c), pro-
minent high density streak artifacts due to the presence
of metallic objects [46] are retained in hysteresis
thresholding.

Despite the need for manual correction in the pre-
viously mentioned circumstances, this approach pro-
vides labelled data in sufficient numbers for DL
applications, while requiring substantially less user input
in comparison to an entirely manual delineation of ima-
ges. The final training dataset consisted of 1574 Axial CT
images of size 512 x 512 as well as the corresponding
BBMbinary labels.

2.1.2. Internal TestingData
In addition to the training data, a further two patient
datasets were randomly selected for testing, corresp-
onding to an approximate 15:85 split for testing and
training by image count. The test scans took place

between October 2013 and November 2014, and were
carried out on the same PET-CT scanner using the
same lowdoseWBprotocol as the training data.

It is essential that the separation of data for train-
ing and testing is based on patient scans due to the
large degree of correlation that exists between image
slices in close proximity [35]. The standard deep learn-
ing approach of a random dataset shuffle followed by a
training, validation, and testing split [47] is unsuitable
for medical volumetric data, and may produce mis-
leading test results.

The data was prepared in the same fashion as pre-
viously described in section 2.1.1 yielding a final internal
test dataset consisting of 228Axial CT images of size 512 x
512 and the correspondingBBMbinary labels. Bothof the
internal test datasets were from skull to proximal femur
andbothwereCE scans, seefigure5.

2.1.3. External TestingData:
In order to further validate performance and assess
generalisability the U-net BBM segmentation models

Figure 1.Workflow for training data labelling. The steps resulting in the hysteresis output are fully automated. The segmentation
labels, shown in blue, are reviewed andmanually corrected if needed.

Figure 2.The hysteresis output segmentation is overlayed in light blue on the input CT image. Example of errors are indicated by the
red arrows.
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were also tested on an external dataset. The dataset has
been made publicly available by Peréz-Carrasco et al
[48]. In their research they have analysed bone
segmentation using energy minimisation techniques.
The dataset consists 27 Axial small (non-whole body)
CT volumes in 20 patients (male= 8 and
female= 12), with amean age of 50 ranging from16 to
93 years. Helical CT images were acquired at a size of
512 x 512 pixels, 0.781 mm−1 pixel and a slice
thickness of 5 mm on a Philips scanner. A total of 270
images and corresponding BBM labels were available.

An additional benefit to using this external test
dataset is that it has also been used by other researchers
[17, 19] in their own versions of the U-net for bone
segmentation. This allows for a direct comparison to
these studies to be included as part of this research. It is
worth noting that, unlike other studies, we have not
used any of the external dataset for training. Instead
we have retained it for testing purposes only.

2.1.4. Preprocessing of Training and Testing Images:
When converting from the 12-bit grayscale DICOM to
an 8-bit PNG file, Matlab will compress the image
automatically. Once the CT calibration factor for
conversion to HU has been applied, this produces an
image between 0 and 255 HU. This means that any
tissues below 0 or above 255 HU are assigned those
values andmuch of the contrast detail relating to bone,
bone marrow as well as contrast dye is lost, see
figure 3(c). Whereas when a larger range is used, such
as -100 to 1000 HU as shown in figure 3(b), the dye is
more identifiable by pixel intensity alone.

For training and testing purposes, five separateHU
ranged datasets were created from the DICOM files:
-100 to 1500, -100 to 1000, -100 to 750, -100 to 500,
and the default of 0 to 255. These ranges were selected
to capture different amounts of BBM, and contrast dye
detail [40].

2.2. Training ofU-netModel
2.2.1. Augmentation
The network architecture used here was based on the
original U-net design [26], and is a fully convolutional
design with skip connections. The network was
implemented in Python using Keras with Tensor-
flow v2.0.

Additional preprocessing augmentations were
applied to improve generalisability as has been done in
[17, 26]. This consisted of rotation± 2°, height/width
shifts±5%, shear±5%, zoom±5%, and horizontal
flipping. The degree of augmentation was randomly
allocatedwithin the ranges indicated.

The network consisted of a contracting path of 14
layers of downsampling convolutions and an expan-
sive path of 14 layers of upsampling deconvolutions.
Pooling with ReLU activations [49] using a stride of
twowas performed at each layer as well asmax pooling
operations, as shown in figure 4.

The Adam optimizer [24, 50, 51] with a learning
rate of η= 1× 10−5 [52] and a drop-out of 50% was
applied. Binary Cross Entropy (BCE) was used as the
loss function for training [28].

Training was performed for 100 epochs, each hav-
ing a batch size of two, with 300 steps per epoch. The
choice of batch size was limited by GPUmemory con-
straints. The literature suggests that a larger batch size,
as in [17], is preferable. A 80:20 split was applied to the
training data to retain a validation dataset to fine tune
the hyper-parameters and verify that the model was
not overfitting.

2.3. SigmoidActivationThreshold
The final layer of the U-net (figure 4) is the output
from a sigmoid activation function that produces a
map of continuous values between zero and one. In
order to convert this to a functional binary mask, a
threshold must first be applied. In previous work this
has been set to a fixed value of 0.5 [53–55].

Figure 3.Example slice, and associated histograms, from the Internal TestDataset 1 demonstrating the impact ofHU range on
visibility of bone and contrast dye.
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The approach used in this paper to determine the
threshold for the sigmoid activation output was based
on finding an optimum balance between true positive
(TP) and false positive (FP) rates based on the preci-
sion-recall curve for a range of threshold choices
between zero and one. The optimum threshold will be
that which corresponds to best balance of precision
and recall, determined by �min 1 recall

precision
∣ ( )∣. This

process was applied for each of theU-netmodels using
the training and validation data.

2.4. SegmentationAnalysis
The Dice Similarity Coefficient ( �

� �
DSC TP

TP FP FN

2

2
)

[56] is an overlap-based metric [57] that we apply to
assess the segmentation outputs from the models. In
this context, a True Positive (TP) indicates agreement
between the ground truth and U-Net segmentations
for pixels corresponding to bone, and a False Positive
(FP) is when the U-Net predicts a bone pixel that does
correspond to the ground truth. This was performed
separately for each image to assess performance across
the various anatomical regions within the testing
datasets.

To determine the significance of differences in
performance between the models, analysis of variance
(ANOVA) [58] was applied to model DSC scores for
Internal Test Dataset 1, 2, and the External Test Data-
set. DSC scores tended towards a value of one, indicat-
ing that the results are left skewed. ANOVA requires
that the data follow a normal distribution, and so a
logit transform was applied to the DSC results prior to
ANOVA testing, where �

�
logit DSC ln DSC

DSC1
( ) ( )

[59]. This produces an approximately normal dis-
tribution suitable for ANOVA. The null hypothesis
here is that there is no difference between the models,
and is rejected only if a p-value of< 0.05 is returned.

Additionally, the DSC was also measured for each
of the test datasets after application of a Sobel filter to
retain only pixels at edges. In this way, an assessment
of the preservation of edge detail was carried out. This
was performed for the outputs of the -100 to +1000
HU rangedmodel only.

3. Results

In this section we present results for the HU ranged
model segmentations on all test datasets. To demon-
strate the performance variation across patient anat-
omy, the DSC scores on individual axial slices of
Internal Test Datasets 1 and 2 are also presented.
Example images have been included to illustrate
differences between models as well as other challenges
specific to the data.We have also compared our results
with other similar boneCT segmentation studies.

3.1. SigmoidActivationThreshold Results
The sigmoid activation threshold selections, based on
the precision-recall curve of the training and valida-
tion datasets, are presented in table 1. All of the HU
range models demonstrated different optimum
threshold levels in relation to the standard value of 0.5,
with the closest being 0.45 for the 0 to 255HUmodel.

For the other models, larger differences between our
approach and the standard thresholdwere observed.Our
results indicate that the application of a standard thresh-
old of 0.5 would negatively impact final binary masks,

Figure 4.TheU-net architecture [26]modified for CTbone segmentation.

Table 1.Optimal threshold values forU-net sigmoid activation layer
ofHU rangemodels fromprecision-recall curves of TrainingData.

HURange
−100
to 1500

−100
to 1000

−100
to 750

−100
to 500 0 to 255

Threshold 0.42 0.57 0.59 0.41 0.45

5

Biomed. Phys. Eng. Express 8 (2022) 055010 P Leydon et al



which highlights the importance of this factor, particu-
larly for−100 to 1500,−100 to 1000,−100 to 750, and
−100 to 500HUrangedmodels.

3.2.Dice Similarity Coefficient Results
DSC scores for models ranged between of 0.979± 0.021
and 0.921± 0.069 for -100 to 1000 on Internal Test
Dataset Patient 1 and 0 to 255 on the External Dataset,
see table 2. The DSC results for Internal Test Dataset
Patient 1were higher than Internal TestDataset Patient 2
and the −100 to 500 a model demonstrated the lowest
overall performance on internal test data. On the
External Test Dataset the −100 to 500 and 0 to 255
models were the best and worst performing achieving
DSC scores of 0.934± 0.059 and 0.921± 0.069
respectively.

The DSCs at edges were lower across all the test
data but the previous trends of DSC scores are main-
tained with the highest overall overlap at edges was
observed in Internal Test Dataset Patient 1 with an
overall DSC score of 0.719± 0.065, follow by Internal
Test Dataset Patient 2 and the External Test Dataset
where respective scores of 0.681± 0.079 and
0.493± 0.194 were recorded. The low DSC on the
External Test Dataset indicates that themodel demon-
strated perfect overlap for less than half of the pixels.

The ANOVA results demonstrated that there were
no significant differences betweenmodels in the Inter-
nal Datasets. For the External Dataset a p-value of 0.04
was observed between the -100 to 500 and 0 to 255
models indicating a significant difference between
thesemodels.

As our internal test data are whole-body (WB)
scans, it is useful to plot the DSC scores for individual
axial slices across the entire patient volume. This is
presented in figure 5 with projection images included
as positional references. Both of the graphs reveal
similar patterns for all HU ranged models, with
corresponding high and low scores occurring in
approximately the same anatomical locations.

From this we can see that Internal Test Dataset for
Patient 1 is generally consistent across the volume with
the main reduction in DSC scores localized within ver-
tebrae of the lower spine where models have partially
included intervertebral discs in their segmentations. It is

evident thatmodels appearmost stable in the thorax and
proximal femurs. All of themodels either removed all or
themajority of the contrast dye for this test dataset. Only
the -100 to 1500 and 0 to 255 HUmodels retained small
regions of contrast in the stomach in a single slice how-
ever a DSC score of 0.989 for both was recorded for this
image indicating excellent overlap with ground truth.
Similar patterns are observed for DSC at edges across the
volume.

The main source of segmentation error not asso-
ciated with contrast dye was due to an implanted car-
diac device with no model successfully removing the
device in its entirety in the final segmentation. It is
worth noting that no patients in the training data had
such a device, see examples in bottom rowoffigure 6.

The plot of DSC scores across volume of Internal
Test Dataset for Patient 2, shown in figure 5, demon-
strates a higher degree of variability both betweenmodels
and across the patient volume. Themain factors impact-
ing performance in all models was the presence of metal
streak artifacts due to high levels of dental filling, as well
as jewellery, and unique to this patient was the presence
of a ring pessary device in the pelvis. There was a large
amount of contrast dye present in this scan in compar-
ison to quantities observed in the training data. This
proved more challenging from a segmentation perspec-
tive, most notably IV contrast in the arm, subclavian
arteries, and descending aorta that was partially included
in several segmentations, seefigure 8.

From figure 5 the DSC at edges for Patient 2 was
most consistent across the thorax but drops at the jaw
and abdo-pelvis region. When the lowest DSCs were
investigated this was due to false positives caused by
prominent streaking artifacts fromdental implants.

3.3. Segmentation Examples
Examples of the segmentations for a selection of the
HU ranged models on each of the test datasets are
presented in the following section, as part of a visual
assessment of segmentations to demonstrate where
models were found deviate, or where stand-out
features were observed. For comparison, WB projec-
tions of BBM segmentations have also been included
alongside the initial hysteresis technique used as part
of the data labelling workflow. Due to the small (non-

Table 2.DSCs (±sd) formodels trained on images over variousHU rangeswith BCE loss. TheDSC results for edges at−100 to 1500H.
U. are also included.

Internal Data 1 Internal Data 2 ExternalData
No. of Images 115 113 270

H.U. Range DSC (±sd) DSC (±sd) DSC (±sd)
−100 to 1500 0.978 ± 0.022 0.965 ± 0.028 0.923 ± 0.067
−100 to 1000 0.979 ± 0.021 0.965 ± 0.028 0.922 ± 0.070
−100 to 750 0.978 ± 0.022 0.965 ± 0.026 0.933 ± 0.052
−100 to 500 0.975 ± 0.022 0.959 ± 0.031 0.934 ± 0.059
0 to 255 0.979 ± 0.025 0.959 ± 0.033 0.921 ± 0.069
Edge 0.719 ± 0.065 0.681 ± 0.079 0.493 ± 0.194
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whole body) CT volumes in the external test data,
projections were performed for the internal data-
sets only.

3.3.1. Internal Test Dataset 1
From figure 6 we can see that the models trained on
-100 to 1500 and -100 to 100HU successfully removed
all of the contrast in the abdomen, and the 0 to 255
model retained a small portion, with respective DSC

scores of 0.992, 0.991, and 0.985 recorded. The metal
cable of the pacemaker device, present in a total of 23
images of Internal Dataset 1, was completely removed
by the -100 to 1500 HU model, whereas intermittent
removal was noted in other models. The -100 to 500
HU model demonstrated the worst performance in
terms of removal of the metal cable, with partial
inclusion on the final segmentation noted on 17
images. The housing of the cardiac device, located on

Figure 5.DSCs for individual axial slices on Internal TestData for Patients 1 and 2 demonstrating performance of differentHU ranged
models across patient volumes. The preservation of edge pixels is also indicated. Grayscale coronal projections of respective CT
volumes have been included as position references.

Figure 6.A selection of CT inputs, ground truth, andU-net segmentations demonstrating a selection ofDSC results, provided in top
right corners, on Internal TestDataset 1.
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the anterior chest wall was themain source of error for
this dataset with progressively more streak artifacts
included in final segmentations as the HU range was
reduced, see bottom rowfigure 6.

When compared to hysteresis thresholding shown
in figure 7 both of the U-net based methods produce
far superior BBM segmentations.Where hysteresis has
several regions of contrast dye throughout the scan, as
well as additional metal artifacts, the U-nets achieve
close to perfect segmentations across theWBvolume.

3.3.2. Internal Test Dataset 2
There were many features present in this dataset that
made it more challenging to segment. The main
differences between themodel performance depended

on the degree to which IV and oral contrast were
removed infinal segmentation.

In figure 8 (top row) the IV contrast in blood vessels
of the neck was only partially removed by U-net models
with smaller HU ranges tending to retain more contrast.
Themajority of models successfully removed contrast in
abdominal region with the 0 to 255 performing the least
well in this respectwith an associatedDSCscore of 0.908.

Many of the low DSC scores were associated with
the lower spine. It was noted that, within this region,
the inclusion of very small areas of false positive or
false negative had a greater impact on the DSC due to
smaller total overlap available. This is illustrated in
figure 8 (bottom row), where the visible difference
between the model segmentations and ground truth is

Figure 7.Coronal projections of segmentation outputs of Internal Dataset 1 for hysteresis (left), 0 to 255HU (centre), and -100 to 1000
HU (right)models. Red arrows indicate segmentation errors due to external cardiac device and ametallic object on patientʼs clothing.

Figure 8.A selection of CT inputs, ground truth, andU-net segmentations demonstrating a selection ofDSC results, provided in top
right corners, on Internal TestDataset 2.
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clearly minimal but this not reflected in the corresp-
ondingDSC score.

From the WB projections presented in figure 9, it
is clear that both of the U-nets are superior to the hys-
teresis-based approach, most notably with respect to
contrast removal. The -100 to 1000 HU ranged model
only retained relatively small amounts of IV contrast
in arm, and abdo-pelvis region as well as partially
removing the pessary device which was almost com-
pletely retained by the 0 to 255HUmodel.

3.3.3. External Test Dataset
Performance on the external dataset was more varied
than on internal data. The best performance was seen
when the input CT was close in appearance to images
from the training set.

Images, such as the small field of view of the head
in figure 10 (bottom row), were where the lowest DSC
scores were observed. The absence of any similar small
field images in our training data is a likely factor for
this DSC reduction. Images within the dataset were
also more varied in appearance in terms of contrast
and sharpness than our training/testing data. This
appears to have been a confounding factor for the
U-nets and introduced a bias in the networks leading
to increases in FPs.

3.4. Comparisonwith other studies
table 3 presents the DSC (± sd) results and additional
relevant details from other previous BBM segmenta-
tion studies for the purpose of comparison with our

Figure 9.Coronal projections of segmentation outputs of Internal Dataset 2 for hysteresis (left), 0 to 255HU (centre), and -100 to 1000
HU (right)models. Red arrows indicate segmentation errors due to patientʼsmetallic jewellery and regions of oral and IV contrast.

Figure 10.Example inputs, ground truth, andU-net segmentations demonstrating a variety ofDSC results, given in top right corners,
on the External Dataset.
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presented method. The respective scores relating to
internal datasets and the same external dataset are
shown separately.

Our −100 to 1000 HU ranged model achieved a
DSC of 0.979± 0.02 on Internal Dataset 1 and
0.965± 0.03 on Internal Dataset 2 which in combina-
tion gives a score of 0.972± 0.03 across the full inter-
nal test data. This is higher than the results of Klein et
et al [17] whose model was trained/tested on whole
body images similar to our own data but with a larger
number of images (n=∼ 7200). Our results are mar-
ginally lower than Noguchi et al [19] whose model
trained on various smaller volume scans with a much
larger number of images used for training (n=16218).
In addition, the dataset of Noguchi et al is not reported
as a low dose scan and as such this suggests the issues
associated with low dose scans discussed in section 1.1
may not have been present in this data.

On the external dataset our model performed bet-
ter than Klein et al, but did not achieve the same level
of performance reported by Noguchi et al. However,
both of these studies used the external dataset as part
of training or fine-tuning of their models. In contrast
we have trained exclusively on the internal data, keep-
ing the external dataset completely separate for the
purposes of testing only.

4.Discussion

In this paper, we have proposed a novel approach to
BBM segmentation in CE low dose WB-CT through
the application of additional preprocessing to the
training data designed to enhance a models ability to
successfully differentiate between high density regions
due to bone and contrast dye. In addition we have
introduced an analytical means of determining the
threshold value of the sigmoid activation output of
theU-net.

Analysis of test datasets with moderate to high
levels of contrast has demonstrated that our method is
effective in producing accurate WB BBM segmenta-
tions inCECT.

To the best of our knowledge, our research is the
first in the literature where all of our data are CE low
dose WB-CT scans. This has allowed for an in-depth
characterisation of the complexity that contrast dye
poses for BBM segmentation in addition to a novel

solution to be presented using a much smaller dataset
than other similar studies (see table 3).

We have assessed five training/testing datasets
each of which captured different amounts of BBM
contrast detail. This was implemented as an additional
preprocessing step through adjustment of the HU
range prior to image conversion fromDICOM toPNG
format required for CNN development in Keras Ten-
sorflow.We have found that in CE scans for larger ran-
ges, such as -100 to 1500HU and -100 to 1000HU, the
U-net was more successful in identifying and exclud-
ing contrast dye in BBM segmentations on a challen-
ging dataset. The method described has a few
limitations. The images used for training were all from
the same institute and used the same protocol for
image acquisition. Segmentation performance in a
clinical settingmaybe impacted by additional variables
such as; the CT manufacturer, kV, tube-current mod-
ulation, reconstruction kernels, edge enhancement,
and beamhardening correction.

The presence of metal streak artifacts was a source
of error for bone segmentation. Other researchers
have proposed modified architectures and training
strategies to reduce metal artifacts in CT [60–62]. Due
to the retrospective nature of this study access to the
raw CT was not possible as such modified reconstruc-
tion was not available. A prospective study that
includes the raw data would greatly improve the
options in terms of kernels, reconstructed field of
view, resolution and analysis of sinogramdata.

Both the training and testing dataset used are rela-
tively small and a k-fold cross validation approach
would address issues relating to data variance such as
the presence of implanted medical devices observed in
the internal test patient data.

Our results, see figure 5, agree with similar WB
data of Klein et al [17] in demonstrating the tendency
of DSC scores to fluctuate across patient volumes. As
such, the use of ANOVA on the logit (DSC) is a useful
tool for assessing differences between models in com-
parison to sole reliance on averageDSC scores.

We have demonstrated the ability of ourmodels to
generalize to a new data despite significant differences
between training and external datasets previously dis-
cussed. However, it is not clear whether or not the sub-
jects in the dataset of Peréz-Carrasco et al had
underlying conditions that would impact the appear-
ance of BBM in the images. The scans used in our

Table 3. Summary of other relevantmodels from literature.

Peréz-Carrasco et al [48] Klein et al [17] Noguchi et al [19] ProposedModel

Method EnergyMinimisation CNN (U-net) CNN (U-net) CNN (U-net)
LossMetric n/a Combination of BCE andDSC DSC BCE
DSC Internal TestData 0.88 ± 0.14 0.95 ± 0.01 0.983 ± 0.005 0.979 ± 0.02

0.965 ± 0.03
Size InternalDataset 270 ∼ 7200 16 218 1812
DSCExternal TestData n/a 0.92 ± 0.05 0.961 ± 0.007 0.934 ± 0.06
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study were restricted to healthy BBM patients. It is
therefore not possible to know how well the system
will generalize to patients suffering from the condi-
tions discussed in section 1.1 and in other similar stu-
dies [17, 19]where bone appearancemay be altered.

Although our original datasets were PET-CT, we
utilised only the CT component in the research pre-
sented. The methods we have outlined can be applied
with little modification to the PET component of the
scan, and improve accuracy of previous bone metabo-
lism assessment tools which are reliant on artifact
prone thresholding approaches [63, 64].

5. Conclusions

We have outlined a U-net deep learning architecture
with additional preprocessing techniques and a cus-
tom sigmoid activation threshold to successfully seg-
ment BBM regions from low dose CE WB-CT scans.
We have demonstrated that, when wider ranges of HU
were used for the training and testing data, the
performance of CNNs improved in terms of differ-
entiating between bone and contrast dye.We have also
shown that excellent results can be achieved using
comparatively small datasets (n= 1812) comprised of
lowdose CT scans.
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