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Abstract. This paper profiles the recent research work on eXplainable AI (XAI), 
at the Insight Centre for Data Analytics. This work concentrates on post-hoc ex-
planation-by-example solutions to XAI as one approach to explaining black box 
deep-learning systems. Three different methods of post-hoc explanation are out-
lined for image and time-series datasets: that is, factual, counterfactual, and semi-
factual methods).  The future landscape for XAI solutions is discussed. 
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1 Introduction 

In the last five years, the problem of eXplainable AI (XAI) has been highlighted as the 
public, business and government face AI-based decision-making in people’s everyday 
lives, jobs, and leisure time [11]. In the European Union, the urgency behind this re-
search area has, in part, being driven by GDPR proposals on explaining automated de-
cisions [40]. However, more broadly, it also arises from a deep concern in the academic 
community that some AI technologies rely on dubious ethical standards and/or unethi-
cal design decisions, decisions that may result AI systems coming to be perceived as 
unfair, unaccountable, and untrustworthy. For instance, consider the issues around bias 
and consent in prominent datasets [24, 25, 35]; MIT recently apologized for the Tiny 
Images dataset, when it was revealed to contain verifiably pornographic images shot in 
non-consensual settings [35]. 
     Facing these challenges, Ireland’s national Artificial Intelligence and Data Analytics 
centre – the Insight Centre for Data Analytics (www.insight-centre.org) – has devel-
oped an extensive program of engagement with government and business in the field 
of XAI, as well as advancing research in the area. On the regulatory side, Insight has 
engaged with initiatives at national and international levels in championing a Magna 
Carta for Data [32], contributing to the European’s Commission’s High-Level Expert 
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Group in AI [1], and the Joint Strategic Research Innovation and Deployment Agenda 
for the Artificial Intelligence, Data and Robotics Partnership [12]. On the research side, 
the Insight centre has an extensive program that aims to formulate a coherent solution 
to the XAI problem (e.g., [7, 20, 26, 30, 41]). In this paper, we present a slice of this 
work directed at image and time-series data, focussing on how opaque, black-box AI 
systems can be explained with reference to more interpretable, white-box AI systems; 
what has been termed the Twin-Systems approach to XAI [8, 14, 15, 20] (see Fig. 1). 
     In the remainder of this introduction we make some of key taxonomic distinctions 
in XAI for different algorithmic approaches to the problem, before showing a 
taxonomic matrix for the research area. Then, in later sections, we sketch the 
algorithmic techniques advanced by Insight and initial user tests of these techniques. 
 
1.1 A Fundamental Distinction: Pre-hoc Versus Post-Hoc 

Many definitional and taxonomic issues arise in XAI, not least because “explanation” 
has for decades proven to be very hard concept to define across many disciplines, from  
Philosophy, to the Philosophy of Science, and Psychology [39]. It is, therefore, not 
surprising that Computer Science and Artificial Intelligence has struggled too [39]. Ar-
guably, we still really do not have precise definitions for the terms “explanation””, “in-
terpretable” and transparent”; though this does not stop us using them on a regular basis.   
However, notwithstanding these definitional issues, there has been some agreement on 
a fundamental distinction between “explanation proper” and “explanation as justifica-
tion”. For example, Sørmo et al. [39] point out the philosophical distinction between 
explaining how the system reached some answer (what they call transparency) and ex-
plaining why the system produced a given answer (post-hoc justification). Lipton [27] 
makes a similar distinction between transparency (i.e., “How does the model work”) 
and post hoc explanation (i.e., “What else can the  model tell me?”). The key idea here 
is that one can causally explain a model directly, in some sense, (e.g., “it optimizes this 
function using such-and-such a detailed method”) or one can explain/justify how it 
reached some decision with reference to other information (e.g., “the model did this 
because it used such-and-such data”). The problem XAI faces is that the former may 
be accurate but can only be comprehended by a handful of people (i.e., how can the 
general public understand a deep learning algorithm) and the latter may be comprehen-
sible but is too approximate to really explain what happens (e.g., saying certain data 
was used may also be uninformative or unclear). At present, these two options for ex-
planation have been set somewhat in opposition to one another [37], even though on 
occasion they shade into one another [11]. Next, we consider these two opposing posi-
tions on “model transparency” and “post-hoc explanation” in more detail. 
 
Model Transparency. This explanation position has been terminologically cast as 
“transparency”, “simulatability” or “interpretable machine learning”. The key idea here 
is that one can causally explain a model directly, in some sense, (e.g., “it optimizes this 
function using such-and-such a detailed method”). In this approach, one understands 
how the whole model works given some representation of it [27] or via some simplified 
proxy model that “behaves similarly to the original model, but in a way that is easier to 
explain” [11] (e.g., [10]).  Rudin [37] argues that the use of inherently transparent mod-
els is the only appropriate solution to XAI in sensitive domains; pointing to her own 
use of prototypes [5]. There are two major problems with this approach to XAI. First, 
to date, few pure instances of good proxy models have been proposed to characterize 
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black box systems. Second, when proxy models have been proposed (e.g., decision 
trees) very little evidence is provided for why they are more interpretable than the orig-
inal black box; that is, the researchers typically just assert they are more interpretable 
without supporting user tests. As Lipton [27] points out “neither linear models, rule-
based systems, nor decision trees are intrinsically interpretable…Sufficiently high-
dimensional models, unwieldy rule lists, and deep decision trees could all be considered 
less transparent than comparatively compact neural networks”. Finally, it should be 
said, that it is not wholly clear when a proxy model actually becomes an identifiably 
separate model; for instance, Frosst & Hinton [10] argue that their model is a stand-
alone one, not an interpretable proxy to work “alongside" a deep learner. Presumably, 
at some (as yet undefined) point a proxy model is no longer a facsimile of the original. 
 
Post-Hoc Explanation. The other explanation position has been terminologically cast 
as justification or explainable machine learning. The key idea here is that one can ex-
plain/justify how a model reached some decision with reference to other information 
(e.g., “the model did this because it used such-and-such data”). Lipton [27] has further 
divided post-hoc explanations into (i) textual explanations of system outputs, (ii) visu-
alizations of learned representations or models (e.g., heat/saliency maps; [42]), and (iii) 
explanations by example (i.e., the classic case-based reasoning approach). This type of 
“explanation by justification”, is an after-the-prediction explanation step where some 
evidence is given to elucidate the predictions made by the AI system; though, some 
techniques, such as visual analytics may operate right across the deep learning pipeline 
[42].  As we shall see, it has recently become clear that explanation-by-example can be 

 

Fig. 1. The Twin-Systems Explanation Framework: A deep learning model (Neural 
Network) produces a miss-classification for an MNIST test image, wrongly labelling a “6” 
as a “0”.   This prediction is explained by analysing the feature-weights of the network for 
that prediction and applying these to a twinned k-NN (Case Based Reasoner/CBR System) 
to retrieve a nearest neighbor to the test-image in the training set. This explanatory image 
shows that the model used an image of a “0” that looks very like a “6” to make its prediction 
of a “0”.  So, though it miss-classifies the item, it is quite faithful to the data it was given. 
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divided into three distinct flavors (i.e., factual, counterfactual, and semi-factual). This 
paper recounts the systematic work that has been done by researchers at the Insight 
Centre for Data Analytics to explore these post-hoc solutions to XAI in image and time-
series datasets. 
 
1.2 Post-Hoc Explanation: Factual, Counterfactual, and Semi-Factuals 

Traditionally, post-hoc explanations were viewed as explanations-by-example where 
some factual (i.e., nearest neighboring) case was produced to explain some target query 
[18]. However, there are other explanatory options based on the type of example used 
in the explanation. Consider a typical scenario where we are trying to explain a black-
box classifier giving loan decisions, operating off a traditional tabular dataset with de-
fined features (e.g., gender). Assume you are refused your loan application and, under 
your GDPR rights, ask for an explanation. The system could give you a factual exam-
ple-based explanation saying “you were refused the loan because your profile is similar 
to person-x who was also refused the loan”. Alternatively, the system could give you a 
counterfactual explanation saying “if you had a higher salary, you would have the pro-
file of person-x who got the loan”. Finally, one could also be given a semi-factual ex-
planation saying “even if you had a higher salary, you would still not have the profile 
of person-x who got the loan”. Of course, computing these alternative explanations is 
non-trivial and, as such, the lion’s share of research has been on factual post-hoc expla-
nations (as in CBR), but there is a growing interest in counterfactual [23, 40], and semi-
factual explanations [19, 31].  Finally, almost all of this research has focused on tabular 
datasets, so here we consider, arguably harder, image and time-series datasets.  
 
1.3 A Taxonomic Matrix for Post-Hoc Explanations 

In the previous subsection, we saw how post-hoc explanations can be divided into three 
distinct types – factual, counterfactual, and semi-factual – and noted that while some 
progress has been made in implementing these strategies for tabular datasets, it is only 

Table 1: The Insight Taxonomic Matrix for Explanation-Types X Datasets 

  Explanation Type  

Data Sets Factual Counterfactual Semi-factual 

Tabular  
 

Kenny & Keane [20] 
Keane & Kenny [14] 
Keane & Kenny [15] 
Kenny et al. [17] 
Kenny et al. [18] 

Keane & Smyth [16]  

---- 

Image  Keane & Kenny [20] 
Ford et al. [8] 

Kenny & Keane [19] Kenny & Keane [19] 

Time- 
Series  

Nguyen et al. [30] 
Delaney et al. [7] 

Delaney et al. [7] ---- 
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very recently that researchers have started to consider them for non-tabular datasets.   
In Insight, we have a research program designed to flesh out these post-hoc alternatives 
for explaining different datasets. Accordingly, our research program aims to fill the 
cells of a matrix created by crossing explanation-types by datasets (see Table 1).    
     In the remainder of this paper we will sketch some of the solutions we have found 
when exploring these different explanation-types for image and time-series datasets.   
So, for image datasets we first consider methods for factual (Section 2), counterfactual 
(Section 3), and semi-factual explanations (Section 4). Then in the remainder of the 
paper, we consider counterfactuals explanations for time-series (Section 5) before look-
ing to future directions for this work (see Section 6). 

2. Post-Hoc Factual Explanations: Images 

A “factual post-hoc explanation-by-example” is a long name for the case-based expla-
nations used in CBR1.  Traditionally, these models deploy a k-NN to solve some clas-
sification or regression problem and then use the nearest-neighbors in k to explain the 
prediction made; where, typically, the prediction is made from some averaging or ag-
gregation of the instances in k [17, 18]. The current use of factual explanations extends 
this approach to explain black-box deep learning models (Artificial Neural Networks 
or ANNs) where the nearest neighboring cases from a k-NN twinned with the ANN are 
selected based on analyzing the feature-weights of the ANN. Recently, Kenny & Keane 
[20] generalized this explanation option in the Twin Systems approach, where the 
feature-weights for a test-instance in a deep learning model are applied to a k-NN, 
operating over the same dataset, to find factual explanations (see Fig. 1).    
     Kenny & Keane [20] also competitively tested several feature-weighting, methods 
from a literature going back to the 1990s, to determine the most accurate method for 
capturing ANNs (including, multi-layered perceptrons and convolutional neural net-
works); these experiments found that a contributions-based method performed best.   
Recently, Papernot and MacDaniel [33] proposed DkNN as a method for finding factual 
explanation cases, although they did not consider weighting the k-NN abstraction, 
which has been found to be crucial [20]. Also, Chen et al. [5] replaced the last layer of 
a CNN with a CBR system to force the black-box to be more transparent. In the present 
section, we sketch our contributions-based method (see section 2.1) and show how it 
can be applied to a CNN dealing with the MNIST and CIFAR datasets before consid-
ering some of its explanatory results and user-tests. 

2.1 The Method: COLE  

A contributions-based feature-weighting method has been found to offer the most ac-
curate analysis of black-box ANNs, with a view to finding factual example-based ex-
planations [20]. This feature-weighting method -- Contributions Oriented Local Expla-
nations (COLE) – can be applied to both multi-layered perceptrons (MLPs) and con-
volutional neural networks (CNNs) to find explanatory cases from the twinned k-
NN/CBR model (i.e., a CNN-CBR twin) applied to the same dataset. COLE fits a k-

 
1   Here, we consider factual examples as explanations; but LIME [36] gives factual information 

about the current test instance via feature importance scores also. 
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NN model with feature contributions to abstract the ANN function, that are calculated 
by multiplying a data-instance by weights it used in the final prediction.  
     To implement this in a CNN there are two possible options. Firstly, the CNN may 
have several fully connected layers post feature-extraction, in which case we have 
shown how saliency map techniques can be used to implement COLE [20]. Secondly, 
there may be a linear classifier post feature-extraction (e.g., the ResNet architectures), 
in which case contributions can be calculated by taking the Hadamard product of an 
instance’s penultimate activations with the weight vector connected to its final classi-
fication (henceforth called C-HP). In both approaches it is possible to highlight the most 
positively contributing features via a feature activation map (FAM) [20]. 

2.2 Results: Factual Image-based Explanations 

Fig. 2a and 3 shows two examples of factual explanations found using a CNN-CBR 
twin system approach on the MNIST and CIFAR-10 datasets, for correct and incorrect 
classifications. In Fig. 2a an incorrect classification is made by the system, where a “6” 
is miss-classified as a “1” and the explanatory nearest-neighbors tell the user that this 
occurs because the dataset contains data which looks like the test image and was la-
belled as “1”. Fig. 3 shows an example using the CIFAR-10 dataset involving C-HP. It 
shows the miss-classification of an automobile as a truck. This incorrect prediction is 
justified by essentially saying to the user “I think this is a truck because it looks like 
these trucks I saw before”.  In addition, the FAMs highlight the most important (i.e., 
the most positively contributing) feature in the classification, which clearly focusses on 
the vehicle wheels in all images. Since these are a central aspect of both automobiles 
and trucks, it makes the miss-classification more reasonable. 

 

Fig. 2. Post-hoc factual, semi-factual, and counterfactual explanations on MNIST showing: 
(a) a factual explanation for a miss-classification of “6” as “1”, that uses a nearest-neighbor 
in latent-space classed as “1”, (b) a semi-factual explanation for the correct classification 
of a “9”, that shows a synthetic instance with meaningful feature changes that would not 
alter its classification, and (c) a counterfactual explanation for the miss-classification of an 
“8” as a “3”, that shows a synthetic test-instance with meaningful feature changes that 
would have been classified as an “8” (n.b., for comparison a counterfactual using a Min-
Edit method is shown with its human-undetectable feature-changes; from [19]).  
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     C-HP has been extensively tested on seventeen classification/regression datasets, 
which consistently showed C-HP to be the best for both MLPs and CNNs. Furthermore, 
Ford et al. [8] have performed a series of user studies using its explanations for MNIST; 
they asked people to judge the correctness/reasonableness of the predictions made by 
the CNN in the presence/absence of explanations. These studies showed that 
explanations impacted people’s perceptions of the correctness of the CNN’s 
predictions. However, these studies also showed that the explanations did not improve 
people’s overall trust/satisfaction in the system when it produced miss-classifications 
(i.e., it did not “explain away” error behaviour). This work also found that people have 
a low-tolerance for error in such automated systems (i.e., algorithmic aversion). 

3. Post-Hoc Counterfactual Explanations: Images 

Although factual explanations have traditionally been the focus for example-based ex-
planations, recently there has been an expanding interest in contrastive-example expla-
nations [19, 23, 40]. Indeed, some have argued that contrastive explanations are much 
more causally-informative than factual ones, as well as being GDPR-compliant [40]. 
Most current counterfactual methods only apply to tabular data [16, 28], but some re-
cent work has begun to consider images. To deal with images, generative models have 
been used to produce counterfactual images with large featural-changes for XAI [38]. 
Recently however, Insight researchers have developed a different approach to generat-
ing counterfactuals for image datasets, called PlausIble Exceptionality-Based Contras-
tive Explanations (PIECE) [19]; it generates counterfactual images by focusing on ex-
ceptional features (an approach inspired by strategies humans use when generating 

 

Fig. 3. A CNN-CBR twin miss-classifies an image of an automobile as a truck. The nearest-
neighbours are all trucks, justifying the prediction. Also, a FAM shows the CNN is focused 
on the wheels in the prediction, features indicative of both automobiles and trucks. 
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Prediction: Truck
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Ground Truth: Truck 
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counterfactuals [4]). The algorithm generates counterfactuals by identifying “excep-
tional” features in the test image, and then modifying these to be “normal”. 

3.1 The Method: PIECE 

PIECE involves two distinct systems, a CNN that is generating predictions to be ex-
plained, and a GAN that helps generate explanatory images. This algorithm will work 
with any trained CNN, provided there is a GAN trained on the same dataset as the CNN. 
PIECE has three main steps: (i) “exceptional” features are identified in the CNN for a 
test image from the perspective of the counterfactual class, (ii) these are then modified 
to be their expected values, and (iii) the resulting latent-feature representation of the 
explanatory counterfactual is visualized in the pixel-space with help from the GAN. 
     Fig. 4 illustrates how PIECE works in practice to generate a counterfactual image-
explanation. Here, the counterfactuals to a test image 𝐼, in class 𝑐, with latent features 
𝑥, are denoted as 𝐼′, 𝑐′ and 𝑥′, respectively. Fig. 4 shows a test image labelled as class 
“8” (i.e., 𝑐) is miss-classified as class “3” (i.e., 𝑐′). Exceptional features are identified 
using mathematical probability in the extracted feature layer 𝑿 which have a low chance 
of occurrence in 𝑐′; these are then modified to be their expected feature values for class 
𝑐′ which modify the latent representation 𝑥 to be 𝑥′. This new latent counterfactual 
representation 𝑥′ is then visualized in the pixel space as the explanation 𝐼′ using a GAN. 

3.2 Results: Counterfactual Image-based Explanations 

Kenny & Keane [19] have compared PIECE to a simple Min-Edit method in a series of 
experiments (along with several other methods in the literature) to highlight the differ-
ence it finds.  Fig. 2c shows the counterfactual explanations for the miss-classification 
of an “8” as a “3” for PIECE and Min-Edit. PIECE shows a plausible counterfactual 
which fully removes all irregularities from the perspective of the counterfactual class 
“8”, whilst the Min-Edit counterfactual does not convey meaningful information to help 

 

Fig. 4. PIECE Explains an Incorrect Prediction Using a Counterfactual: The test image 
labelled as “8” is miss-classified as a “3” by the CNN. To show how the image would have 
to change for the CNN to classify it as an “8”, PIECE generates a counterfactual by (a) 
identifying the features that have a low probability of occurrence in the counterfactual class 
c' (i.e., “8” class) before modifying them to be the expected feature values for c', and (b) 
using a GAN to visualize the image I' (here we show progressive exceptional-feature 
changes that gradually produce a plausible counterfactual image of an “8”). 
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a user understand the difference between the two classes.  Furthermore, [19] compared 
PIECE to a Min-Edit approach, generating 193 counterfactual explanations for right 
and wrong classifications on the MNIST and CIFAR-10 datasets. The evaluation 
measures assessed the plausibility of the generated instances by virtue of their proxim-
ity to the underlying data distribution. On most measures, PIECE was significantly bet-
ter than the Min-Edit approach and other popular methods [19]. 

4. Post-Hoc Semi-Factual Explanations: Images 

The last missing piece of the puzzle for post-hoc explanations is the largely under re-
searched semi-factual explanations. To understand semi-factuals computationally, it is 
interesting to contrast them with counterfactuals; whilst counterfactuals are typically 
described as the minimum distance an instance must travel to cross a decision boundary, 
a semi-factual can be seen as the maximal distance an instance can travel without chang-
ing its classification (n.b., while still being a plausible instance). An AI loan application 
system might explain its decision semi-factually by saying “Even if you had asked for 
a slightly lower amount, you still would have been refused the loan”. We have found 
only one decade-old paper related to semi-factual explanations (see [31] on a-fortiori 
reasoning that was only on tabular data). 

4.1 Method & Results: PIECE for Semi-Factuals 

To implement semi-factual explanations for images, we used the PIECE algorithm, but 
stop the modification of exceptional features before the decision boundary is crossed. 
As we shall see, this results in a large, plausible change to the image that does not 
change the classification. For comparison, we compared it again against the Min-Edit 
method; although this time, the method is stopped not after crossing the decision bound-
ary, but one optimization step before, so the classification remains. 
     We measure “good semi-factuals” for images with the 𝐿! distance between the test 
image and synthetic explanatory semi-factual in the pixel-space (n.b., the greater the 
distance the better). Kenny & Keane [19] compared PIECE against the Min-Edit 
method, finding significant differences between the two in terms for how much of the 
image is modified before reaching the decision boundary. This result shows that that 
the “blind perturbation” Min-edit method is suboptimal for generating semi-factuals 
close to the decision boundary. Figs. 2 and 5 show some examples of semi-factual ex-
planation for the MNIST and CelebA datasets, respectively. Fig 2b shows a semi-fac-
tual explanation for the correct classification of a “9” on MNIST. Glossed, the expla-
nation is saying “Even if the test image looked like this (i.e., closer to a 4), the model 
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would still have thought it was a 9, ergo, the initial classification is definitely correct”. 
A similar explanation is conveyed in Fig. 5a for the CelebA dataset. 

5 Post-Hoc, Counterfactual Explanations:  Time-Series 

We have now demonstrated how nearest neighbor techniques in twin systems can 
explain the predictions of black-box deep learners (such as CNN’s). Next, we focus on 
explanations in the time-series domain. The current focus in XAI for time series mainly 
focusses on saliency-based approaches where important sub-sequences or features are 
highlighted [30]. However, given the immense success of nearest-neighbor classifiers 
using a variety of distance measures [3, 29], instance-based counterfactual explanations 
also seem like an exciting avenue to pursue for XAI in time series. 
     Earlier we highlighted that counterfactual explanations with image-data is a recent 
development in XAI; however, until very recently, counterfactuals explanations of 
time-series models have been largely ignored. The best way to understand how 
counterfactual explanations might be used for explaining time-series data is to explore 
how they differ from factual explanations. Consider a binary classification  system 
which decides whether a city has Oceanic Climate or a Mediterranean Climate based 
on weekly temperatures over some historical period. The system explain a prediction 
factually saying “Amsterdam has an Oceanic Climate because it is most similar to 
London (a city in the training data) which also has an Oceanic Climate”. In contrast, 
the system might explain its decision counterfactually by saying “If Amsterdam had 
slightly hotter summers the system would predict the city to have a Mediterranean 
climate”. Tabular methods for counterfactuals [40], quickly become intractable for 
time-series data because of the number of possible feature dimensions and the domain-
specific distance measures (such as DTW). In response to this gap in the literature, 
some recent proposals have been made to use contrastive methods to explain time-series 
predictions. Karlsson et al. [13] implement explainable time-series tweaking, using an 
opaque shapelet-based classifier, where they find the minimum number of changes to 
be performed to the given time series that changes the classification decision. Also, by 
modifying the original loss function [59] to generate counterfactuals, Ates et al. [2] 

 

Fig. 5 (A) A semi-factual explanation justifying why the initial classification was definitely correct, 
in that, even if the image was smiling much less, it still would have classified it as “smiling. (B) A 
counterfactual explanation conveying to a user why the CNN made a mistake, and how the image 
would need to look for it to have classified it correctly (as computed by PIECE and Min-Edit) 
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have explored generating counterfactual explanations for multivariate time series 
classification problems. Also, Labaien et al. [21] have progressed contrastive 
explanations for the predictions of recurrent neural networks in time-series prediction. 
Recently researchers at Insight proposed an instance-based approach, called Native-
Guide, for counterfactual generation in time series [7].  This approach has been shown 
to work with any classifier, using both DTW and Minkowski distance measures.  

5.1 The Method: Native-Guide for Time-series Counterfactuals 

The current method – Native Guide – incorporates a strategy where the closest in-
sample counterfactual instance to the test-instance is adapted to form a new 
counterfactual explanation [16, 22, 31]. Here the “Native-Guide” is a counterfactual 
instance that already exists in the dataset, it is the nearest-neighbor time-series to the 
query that involves a class change (see Fig. 6). We can retrieve this in-sample 
counterfactual instance using a simple 1-NN search. Once this instance is found it is 
perturbed towards the query until just before the decision boundary. The generated 
counterfactual instance C* (the yellow point in Fig.6), should offer better explanations 
than the original in-sample counterfactual as it is in closer to the query whilst still 
staying within the distribution of the data.  Fig. 7 shows a specific example in the 
climate domain for a  counterfactual  explanation of a time-series.  
     When using Euclidean distance perturbation a simple weighted perturbation strategy 
works well. But, when working with DTW a technique known as weighted Dynamic 
Barycenter Averaging (DBA) is required to implement the perturbation [9, 34]:   
 
Definition: Weighted average of time series under DTW. Given a weighted set of 
time series D	=	(T!,β!),	….,	(T",β"), the average time series under DTW, T1, is the 
time series that minimizes: 

 

Fig. 6: A time series data set for a binary classification task with two class labels. A query 
time series 𝑇!	(represented as X) and it's Native-Guide 𝐶"#$%&'. The generated counterfac-
tual 𝐶∗	is represented in yellow. 
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𝑎𝑟𝑔𝑚𝑖𝑛	𝑇9 =:𝛽# ∙ 𝐷𝑇𝑊$(𝑇9, 𝑇#)
%

#&!

 

5.2  Results: Native-Guide for Counterfactuals 

Native Guide was tested on a climate case-study and over 35 diverse datasets from the 
UCR archive [6]. In these experiments, a specialized distance-measure (called RCF, 
see [16]) was used to assess if the generated counterfactuals were in close proximity to 
the query, along with novelty detection algorithms, to assess if the generated counter-
factuals were within the distribution of the data. The generated counterfactual instances 
that are not within the distribution of the data are referred to as being Out-of-Distribu-
tion (OOD). A subset of our results are shown in Table 2 with a full analysis and dis-
cussion of results in the original paper [7]. The results highlight that Native-Guide gen-

 

Fig. 7: Different explanations for a queried city (Amsterdam) in the climate prediction task 
(A) Factual Explanation: “Amsterdam has an Oceanic climate because it is most similar to 
London, which has an Oceanic climate too”. (B) In-sample Counterfactual Explanation: “If 
Amsterdam had the same weather profile as Salamanca the system would classify it as 
having a Mediterranean climate”. Salamanca’s weather profile is quite different to Amster-
dam’s (noticeably hotter summers and warmer winters). An explanation that is more similar 
to the query might be more informative and this motivates the generation of a new coun-
terfactual using Salamanca as a “Native-Guide” (C) If Amsterdam had a weather profile 
like the Generated-Instance then system would classify it as having a Mediterranean cli-
mate. This is a better explanation than B because the generated time series is much closer 
to the original query by comparison to Salamanca and is also within the data distribution.   
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erates proximal and plausible counterfactual explanations for a diverse range of da-
tasets. The generated counterfactual instances are significantly closer to the query when 
compared to the existing in-sample counterfactual instances.  

6 Future Directions 

This paper has briefly summarized the Insight Centre for Data Analytics’ engagement 
and contributions to the rapidly evolving and increasingly important field of XAI.  The 
immediate avenue for future work is to fill out the matrix detailed above (in Table 1).  
This plan underscores the need to explore semi-factual explanations in tabular and time-
series datasets. Additionally, we have already considered and published work on natural 
language counterfactual explanations which focused on the issue of grammatical plau-
sibility [26]; future work in this area will also extend this to factual and semi-factual 
explanations. Other interesting avenues exist in applying the PIECE algorithm to tabu-
lar, text, and time-series datasets, to see if the modification of exceptional features to 
generate contrastive explanations carries over into these other domains. Finally, it is 
important to reiterate that whatever explanation strategy bears the most fruit computa-
tionally will need to be psychologically verified in user tests, such as those in [8]. 
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