
Abstract 

Recently, it has been proposed that fruitful synergies 
may exist between Deep Learning (DL) and Case-
Based Reasoning (CBR), that there are insights to 
be gained by applying CBR ideas to problems in DL 
(what could be called DeepCBR).  In this paper, we 
report on a program of research that applies CBR 
solutions to the problem of Explainable AI (XAI) in 
DL. We describe a series of twin-systems pairings 
of opaque DL models with transparent CBR models 
that allow the latter to explain the former using 
factual, counterfactual and semi-factual 
explanations. This twinning shows that functional 
abstractions of DL models (e.g., from feature 
weights, feature contributions, predictive analyses) 
can be used to build explanatory solutions. We also 
float the idea that some of these techniques may 
apply to the problem of Data Augmentation in DL, 
underscoring the fecundity of these DeepCBR ideas. 

1 Introduction 

Recently, Leake and Crandall [2020] have argued that key 

challenges facing Deep Learning (DL) could benefit from 

insights arising from Case-Based Reasoning (CBR). 

Adopting this perspective, we have mined a rich vein of 

research based on applying CBR to the challenges raised by 

eXplainable AI (XAI) for Deep Learning (see e.g., [Keane 

and Kenny, 2019; Keane and Smyth, 2020; Keane et al., 2021; 

Kenny and Keane 2019, 2021a, 2021b; Kenny et al., 2019, 

2021; Delaney et al., 2021; Smyth and Keane, 2021]), along 

with recent extensions to Data Augmentation [Temraz and 

Keane, 2021; Temraz et al., 2021]. This work started from 

long-standing proposals in CBR on the use of factual, case-

based explanations [Leake and McSherry, 2005; Sørmo et al., 

2005], but has been extended to consider the use of 

counterfactual and semi-factuals explantions as well.  

       This work is anchored by the notion of Twin Systems, in 

which an opaque black box (DL) model is mapped to a more 

transparent (CBR) model, to allow the latter to explain the 

former (see Figure 1 and [Keane and Kenny, 2019]).  In this 

paper, we review our recent work on applying this idea to the 

XAI challenges in DL, we update the definition of twinning 

and consider the novel departure of applying twinning to data 

augmentation.   As such, this paper profiles what we hope to 

be, a set of interesting and productive ideas for how CBR can 

be used to benefit, support and expand DL. 

      In the remainder of this introduction we (i) introduce 

three explanatory strategies for DL based on factual, 

counterfactual and semi-factual cases, (ii) update our earlier 

definition of twin systems [Kenny and Keane, 2019, 2021b; 

Kenny et al., 2021], and (iii) outline the structure for the rest 

of the paper. 

 

Fig. 1: A simple ANN-CBR twin-system (adapted from [Kenny and 

Keane, 2019]); a query-case posed to an ANN gives an accurate, 

but unexplained, prediction for a house price. The ANN is twinned 

with the CBR system (both use the same dataset), and its feature-

weights are mapped to the CBR model to retrieve an example-based 

nearest-neighbor case to explain the ANN’s prediction.      
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1.1 A Tale of Three Explanations 

Recently, the XAI literature has rapidly moved from the more 
traditional factual, example/case-based explanations to 
counterfactual [Byrne, 2019; Miller, 2020; Karimi et al., 
2020; Keane et al., 2021] and semi-factual explanations 
[Kenny and Keane, 2021a]. Taxonomically, these reflect 
options for post-hoc explanations using different types of 
examples. Figure 2 shows the main divisions in approaches 
to XAI along with some solutions (blue ovals), reflecting 
recent proposals on XAI taxonomies [see e.g., Lipton, 2018]. 
       Factual Explanations. These explanations are the case-
based examples discussed in hundreds, if not thousands of 
CBR papers [Leake and McSherry, 2005; Sørmo et al., 2005]; 
except that now the example-cases to explain DL are 
retrieved guided by extracted feature-weighs from the DL 
[Kenny and Keane, 2019]. Imagine a SmartAg system, where 
a DL model for crop growth tells a farmer than in the next 
week, the grass yield on their farm will be 23 tons, and the 
farmer asks “Why?” [Kenny et al., 2019]. Using these 
techniques, a factual explanation could be found from 
historical cases for this farm using its case base, replying 
“Well, next week is like week-12 from two years ago, in 
terms of the weather and your use of fertilizer and that week 
yielded 22.5 tons of grass”.  This explanatory factual case 
comes from finding the nearest neighbor in the CBR’s dataset 
(aka the training data for the DL).  Kenny et al. [2021] tested 
a twin-system of this type, in user studies using image-data 
and found that people’s perceptions of incorrect items are 
improved by explanations, though the explanations do not 
mitigate people’s negative assessment of the model, when it 
makes errors in its predictions. 
       Counterfactual explanations. This explanation type is 
quite different to the factual option. It tells the end-user about 
how things would have to change for the model’s predictions 
to change (hence, it can be used for algorithmic recourse; 
Karimi et al. [2020]).   Imagine the farmer thinks that the crop 
yield should be higher than 23 tons and asks, “Why not?”; 
now, the AI could provide advice for getting a better yield in 
the future, by explaining that “If you doubled your fertilizer 
use, then you could achieve a higher yield of 28 tons”.  So, 
unlike factual explanations which tend to merely justify the 
status quo, counterfactuals can provide a basis for actions that 
can change future outcomes (see [Byrne, 2019; Miller, 2019] 
on the psychology of counterfactual explanations for XAI). 
        Semi-factual explanations. Finally, semi-factual 
explanations also have the potential to guide future actions. 
Imagine again, the farmer thinks that the crop yield should be 
higher than 23 tons and asks, “Why not?”; now, the AI could 
provide a semi-factual “even-if” explanation that is also quite 
informative saying “Even if you doubled your fertilizer use, 
the yield would still be 23 tons”.  In this case, the farmer is 
potentially warned-off over-fertilizing and creating 
conditions that might pollute the environment. Semi-factuals 
have been examined occasionally in psychology [McCloy 
and Byrne, 2002], but hardly at all in AI (see Nugent et al’s 

 
1 Previously, this part of the definition had the heading  

“Feature-Weight Mapping”, which is now generalized somewhat.  

[2009] discussion of a fortori reasoning for one notable 
exception in the CBR literature). 
       As we shall, these three options for explanation have 
been explored within the twin-systems approach, in which 
CBR ideas are used to make DL more transparent. 

1.2 Re-Defining Twinning and Twins 

Keane and Kenny [2019] reviewed a potential synergy 

between DL and CBR models for XAI, coining the term 

“twin systems” to describe a framework for them (see 

Figure 1). After considering the literature, they found 

sporadic research on using CBR to explain Artificial Neural 

Networks [ANNs, then Multi-layered Perceptrons (MLPs)] 

from the 1990s to 2000s [Nugent et al., 2009; Shin et al., 

2000]; this research explored the idea that case-based 

examples could provide good explanations [Leake and 

McSherry, 2005; Sørmo et al. 2005].  These systems paired 

an opaque ANN with a more transparent CBR system for 

explanatory purposes (i.e., an ANN-CBR twin). Typically, 

this twinning extracted feature weights from the ANN using 

various methods and used them in the CBR retrieval step to 

find factual, explanatory cases (see Figure 1). Recently, this 

general approach has been extended to other explanation 

strategies (e.g., counterfacutals) and DL architectures [e.g., 

convolutional neural networks (CNNs)].  Looking across 

these diverse efforts, the original definition of twin systems 

needs to be extended to reflect these developments. 

Accordingly, we re-define ANN-CBR twins as having (the 

underlined words show the changes to the wording of the 

original definition): 

• Two Techniques. A hybrid system where an ANN (a 

MLP or DL model) and a CBR technique (notably, a k-

NN) are combined to meet the system requirements of 

accuracy and interpretability. 

• Separate Modules. These techniques are run as separate, 

independent modules, “side-by-side”. 

• Common Dataset. Both techniques are applied to the 

same dataset (i.e., twinned by this common usage). 

• Functionality Mapping1. Some characterization of the 

ANN’s functionality – typically described as feature-

 Fig 2.  Broad taxonomic divisions in Explainable AI (XAI) 



weights, feature-importances, or predictive outcomes – 

that “reflect” what the ANN has learned, is mapped to 

the k-NN retrieval and/or adaptation steps of the CBR. 

• Bipartite Division of Labor. There is a bipartite division 

of labor between the ANN and CBR modules, where 

the former delivers prediction-accuracy, and the latter 

provides interpretability by explaining the ANN’s 

outputs (in classification or regression), using factual, 

counterfactual, or semi-factual instances 

This upgraded definition of twinning covers the range of 
different methods that have been developed in recent work.  
The substantive change to this definition lies mainly in its 
inclusion of new explanation strategies, moving beyond 
CBR’s traditional, example-based explanation approach, to 
counterfactual and semi-factual explanations (which were not 
heavily researched in CBR).  Notably, the definitional change 
expands the purview for what is mapped from the ANN to the 
CBR, to include information about feature importance (e.g., 
discriminability, exceptionality) and predictive outcomes 
(e.g., decision boundaries). In the next sub-section, we review 
the structure of the paper, before describing several specific 
techniques using this twinning idea (see Section 2-4).       

1.3 Outline of Paper 

In the remainder of this paper, we explore how the proposed 
(updated and generalized) twin-systems framework has been 
implemented in our work on factual, counterfactual, and 
semi-factual explanations for DL models (see Table 1 for a 
summary and Section 2-4). One of the interesting 
observations that arises from this review of techniques is that 
different explanation strategies can use different functional 
aspects of the DL model to achieve their aims (e.g., feature 
weights versus exceptional-feature information).  Finally, we 
also discuss how a CBR counterfactual method can be used 
for Data Augmentation (see Section 5).  As such, this paper 
reports three main novelties, in meeting its aims, namely: 

• A new, more-general definition of twin systems  

• A review of major examples of twin-systems solutions 

using CBR in DL for XAI and Data Augmentation 

• A discussion of the basis for relating CBR and DL 

systems productively, for future work 

In the next section, we turn to the first of the explanation 
strategies reviewed, using twinning for factual explanations. 

Table 1: Summary of the types of twinning strategies adopted in recent work.  

Explanation Strategy Paper Data Types Functionality 

Mapping 

Factual  

 

Kenny & Keane [2019] tabular, image important features  

Counterfactual  
Keane & Smyth [2020] 

Smyth & Keane [2021] 

Delaney et al. [2021]   

Kenny & Keane [2021] 

tabular 

tabular 

time-series 

tabular, image 

predictive outcomes 

predictive outcomes 

discrimintive features 

exceptional features 

Semi-factual Kenny & Keane [2021a] image       exceptional features 

 

 

Fig. 3. Post-hoc factual, semi-factual, and counterfactual explanations for MNIST showing: (a) a factual explanation for a misclassification 

of “6” as “1”, that uses a nearest-neighbor in the latent-space classed as “1”, (b) a semi-factual explanation for the correct classification of 

a “9”, that shows a synthetic instance with meaningful feature changes that would not alter its classification, and (c) a counterfactual 

explanation for the misclassification of an “8” as a “3”, that shows a synthetic test-instance with meaningful feature changes that would 

have been classified as an “8” (adapted from [Kenny and Keane, 2021a]).  

 

 

Label: 8 
Prediction: 3

Counterfactual Min-Edit  
Counterfactual 

Test Image

If the test image looked like this, I  
would have thought it was an “8”.

Test Image

Even if the test image looked like this, I still  
would  have thought it was a “9”.

Label: 9 
Prediction: 9

Semi-Factual 

(c) Counterfactual(b) Semi-Factual

New Prediction: 8

New Prediction: 8
New Prediction: 9

Test Image

I think the test image is a “1” because it  
looks like this “1” in the training data.

Label: 6 
Prediction: 1

(a) Factual

Factual

Label: 1 
Prediction: 1



2 Twinning for Factual Explanations 

Twin-systems using factual explanations were introduced by 
Kenny and Keane [2019] as a general method to explain 
neural networks locally using CBR. The framework proposes 
that an ANN may be abstracted in its entirety into a single 
proxy CBR system that mimics the ANN’s predictive logic.  
This solution has a notable advantage over other explanation 
methods as CBR is non-linear (e.g., as opposed to say LIME 
[Ribeiro et al. 2016]) and can thus more accurately abstract 
the non-linear ANN function using only a single proxy model. 
Figure 3a shows an example of a factual explanation for 
image data – using the MNIST dataset – in which the DL 
model makes an incorrect classification (of a 6 as a 1), with 
the factual case showing the nearest neighbor (image of a 1) 
that explains why the DL misclassified. Kenny et al. [2021] 
reported user studies testing such misclassifications for a 
CNN using the actual factual examples found by the method. 
      Twin-system techniques differ from other factual 
explanation-by-example approaches in their use of feature 
weights.  Most methods for post-hoc explanation-by-example 
use feature activations to locate similar training examples to 
a test instance (aka neuron activations in the ANN [Papernot 
and MacDaniel, 2018; Jeyakumar et al., 2020]).  In contrast, 
the twin-systems solution uses feature contributions, which 
weight these neuron activations by their connection weights 
to the predicted class.  This approach has the effect of finding 
nearest neighbors that (i) are predicted to be in the same class 
as the test case, and (ii) have similarly-important features 
used in the prediction. Notably, this twinning operation also 
allows the CBR’s predictive function to better mimic the 
ANN’s function, lending credible evidence to the proposal 
that it has abstracted the ANN’s decision-making process.  

2.2 Factuals: Commentary 

This contributions-based feature-weighting method has been 
widely tested on classification and regression problems 
involving a variety of MLP/DL models and has consistently 
been shown to deliver good factual explanations [Kenny & 
Keane, 2019, 2021b]. Indeed, Kenny & Keane [2019] 
showed that this feature-weighting method also out-
performed the historical methods from the CBR literature 
(going back to the 1990s). As such, the takeaway from 
considering this explanation type is that the feature-
contributions functionality of the DL system is a critical input 
to the success of the approach, though as we shall see the 
same may not hold for other explanation strategies. 
 

3 Twinning for Counterfactual Explanations 

In contrast to twin systems for factual explanations, the type 
of ANN functionality that has been used to compute 
counterfactual explanations shows significant variation.  We 
have explored three methods that all use different aspects of 
the ANNs functionality, including (i) a method for time-
series data using disriminative features, (ii) a pure-CBR 
method only needs feedback from the ANN’s predictions (for 
decision boundaries) and (iii) a method that uses exceptional 
features from analyses of the ANN’s data distributions.  We  

Fig. 4: A counterfactual instance that explains the classification of 

an ECG signal from [adapted from Delaney et al., 2021]. Here, a 

black-box’s classification of a normal heartbeat (purple and blue 

line) is explained with a counterfactual showing an abnormal, heart-

attack signal (purple and red line). 

 
describe the first two methods here, leaving the last to the 
next section, as the latter also finds semi-factuals (section 4).     

3.1 Counterfactuals Using Feature Importance 

In a manner that is reminiscent of a feature contributions 
method used for factual explanations [Sani et al., 2017], 
counterfactual explanations for time-series datasets have 
used discriminative features [Delaney et al., 2021]. The 
Native Guide method is a model-agnostic, case-based 
technique that produces plausible and diverse counterfactual 
explanations for black-box DL time-series classification 
systems [Delaney et al., 2021]. Initially, Native Guide 
retrieves counterfactual solutions that already exist in the 
case-base (e.g., the test-case’s nearest unlike neighbor or 
NUN, see also [Nugent et al., 2009]). Next, to enhance the 
generation of sparse and proximate solutions, discriminative 
areas of the time series are located from the Deep Learner 
using Class Activation Mapping [Zhou et al., 2016]; note, if 
there is no access to the model’s internals, then model 
agnostic techniques can be used (e.g., such as SHAP). These 
existing counterfactual cases and the discriminative-feature 
information are then used to guide an adaptation step that 
generates explanatory counterfactuals to find a discriminative, 
semantically-meaningful contiguous subsequence in the time 
series data (see Figure  4). 
      Results from comparative experiments on several diverse 
time-series datasets from the UCR archive, have indicated 
that Native Guide produces plausible and diverse 
explanations for a state-of-the-art, black-box CNN 
architecture. These studies also show that benchmark 
constraint-based optimization techniques [Wachter et al., 
2018; Mothilal et al., 2020] frequently failed to produce 
plausible counterfactual explanations in these time-series 
domains. We see the plausibility of the counterfactual 
explanations produced by Native Guide as being due to its 
generation process being grounded in existing counterfactual 
solutions from the training data.  



3.2 Counterfactuals from Predictive Outcomes 

Though the above use of discriminative features has been 

shown to be important for identifying good counterfactuals in 

time-series data, for tabular data another pure-CBR method 

works well, by using cases in the case-base that are close to 

the decision boundary. This instance-based counterfactual 

method does not require access to the internals of the DL 

model but rather works off feedback from the ANN’s 

predictive outcomes (reflecting its decision boundary). 

     Keane and Smyth’s [2020] case-based counterfactual 

method exploits known counterfactual relationships in the 

dataset. This instance-guided method finds a test case’s 

nearest neighbor that takes part in a so-called explanation 

case (xc). An explanation case is a pair of mutually-

counterfactual cases that occur in the case-base that differ by 

at most two features (so-called “native counterfactuals”). The 

test case and the counterfactual case from this nearest xc are 

used to guide the generation of a new “good” counterfactual 

for the test case, by adapting the test-case’s features with the 

(at most) two difference-features from the xc’s counterfactual 

cases. By construction, these new counterfactuals are 

guaranteed to be contain feature values that naturally occur 

in the problem space, rather than interpolations of feature 

values that may implausible (such as those that can be 

produced by Wacheter et al.’s [2018] method).  

     In a series of tests conducted over a wide range of datasets, 

this CBR method has been shown to generate plausible 

counterfactuals, often involving counterfactual relationships 

that are closer than those found in native counterfacutals in 

the dataset [Keane and Smyth, 2020; Smyth and Keane, 

2021]. Interestingly, recent user testing has shown that people 

prefer counterfactual explanations with 2-3 feature 

differences, supporting a key assumption of this method 

[Förster et al., 2020]. This technique has also been used for 

Data Augmentation, where again good results are found for 

2-difference counterfactuals (see section 5).  

3.3 Counterfactuals: Issues & Comments 

These CBR solutions for counterfactual explanations of DL 

models, illustrate how twinning can change depending on the 

explanation strategy being computed. For factual 

explanations, the twinning process relies on an analysis of 

feature weights, that are then re-used in the CBR retrieval 

step. For counterfactual explanations, an analysis of 

discriminative-features can benefit the generation of 

plausible counterfactuals in the time-series domain.  

However, we also saw that counterfactual explanations can 

also be generated with just a knowledge of the DL model’s 

predictions.  However, it should be noted, that this sort of 

approach will always be approximate; the counterfactual 

technique is arguably just “getting by” with minimal 

information from the twinned DL. Interestingly, much of the 

discussion in the counterfactual literature hinges on this 

question; namely, how well a technique can do without more 

knowledge of the twinned-model and/or the domain (e.g., 

distributional information, causal knowledge of the domain, 

feature-importance information; see [Karimi et al., 2020] for 

discussions).  Indeed, in the next section, when we review our 

final method for semi-factuals (and counterfactuals), we will 

see another type of information – about feature exceptionality 

– can also be used to compute counterfactuals. 

4 Twinning for Semi-Factuals  

We have seen that CBR solutions for factual and 
counterfactual explanations in twin systems can be guided by 
some analysis of the features in the DL model. There is a 
further option that specifically hinges on using exceptional 
features that can generate semi-factuals (and counterfactuals).   
This is best understood by first considering the relationship 
between semi-factuals and counterfactuals. 
     Recall, that the counterfactual explains by telling the user 
what will change the outcome (e.g., yield will be higher if 
you use more fertilizer); a good counterfactual will take the 
user just over the decision boundary, into the closest possible 
world in which the outcome is different [Lewis, 1973].  The 
semi-factual explains by telling the user about how feature-
values can change without producing a different outcome 
(e.g., yield will be the same even if you double fertilizer use); 
a good semi-factual takes the user to a point “just before” the 
decision boundary, it is akin to telling the user about the 
headroom in a feature before a counterfactual change occurs.  
Hence, semi-factuals (which have received little attention in 
the literature) tend to be computed relative to counterfactuals; 
the semi-factual can be viewed as a perturbation of the 
counterfactual that leaves the class as is. 

4.1 Semi-factuals from Exceptional Features 

This is the approach adopted by Kenny and Keane’s [2021a] 
Plausible Exceptionality-Based Contrastive Explanations 
(PIECE) method from which they generate semi-factuals and 
counterfactuals based on an analysis the feature-distributions 
of classes found in the DL model; specifically, they find 
exceptional features in the counterfactual class and then 
perturb the test case using these features. When the 
exceptional features used in this perturbation are rank ordered 
based on exceptionality and applied successively, a semi-
factual is generated “on the way” to finding the 
counterfactual; the best semi-factual is the instance generated 
from perturbing exceptional features, just before crossing the 
decision boundary to generate the counterfactual. 
     PIECE works by identifying “exceptional features” in a 
test instance with reference to the training distribution; that 
is, features of a low probability in the counterfactual class are 
modified to be values that occur with a high probability in 
that class.  For example, when a CNN has been trained on the 
MNIST dataset and a test image labelled as “8” is 
misclassified as “3”, the exceptional features (i.e., low 
probability features in the counterfactual class 8) are 
identified in the extracted feature layer of the CNN via 
statistical modelling (i.e., a hurdle model to model ReLU 
activations) and modified to be their expected statistical 
values for the 8-counterfactual-class (see Figures 3b and 3c). 



Depending on the number of exceptional features changed, 
PIECE will produce a semi-factual or counterfactual.  Note, 
at present, PIECE uses a generative model (i.e., a GAN) to 
help produce these synthetic cases (as it helps guarantee 
plausibility), but an earlier version of the system simply 
used a k-NN to find the closest instance in the training data to 
the modified test instance. 

4.2 Semi-factuals: Issues & Comments 

So, here we can see that semi-factuals (and counterfactuals) 

can be found for DL-CBR twins relying on a somewhat 

different feature-analysis (based on exceptionality). The core 

difference with PIECE over the earlier methods discussed is 

that the case base is not used directly to retrieve a case for 

explanation, but rather its distributional properties are 

summarized to inform synthetic explanation generation, 

though a nearest case could just as easily be used. 

5 Data Augmentation Using Counterfactuals 

Thus far, we have seen that several productive links can be 
made between Deep Learning and CBR in the XAI field.    
But, Leake & Crandall [2020] sketched a broader canvas, 
arguing that there should be many points of contact between 
DL and CBR (e.g., with respect to data-generation problems).  
Recently, we have considered one such avenue in Data 
Augmentation.  It is well-known that DL models typically 
require large datasets to be successful and several Data 
Augmentation methods have emerged to solve this problem 
[Antoniou et al., 2017; Chawla et al., 2002; Shin et al., 2018].   
In recent work, we have found that the case-based 
counterfactual method [Keane and Smyth, 2020] generates 
useful synthetic cases to augment datasets, to help them deal 
with the problems caused by the “concept drift” associated 
with climate change. 

      Temraz et al. [2021] examined the prediction problems 

faced by a grass-growth prediction model for precision 

agriculture dealing with climate-disruptive events [Kenny et 

al., 2019, 2020]; when climate disruption occurs – as in the 

very hot weather in Europe in the summer of 2018 – past 

cases become less useful and predictive accuracy drops.   

Temraz et al. [2021] took an historical case-base of grass-

growth records from 6,000+ Irish dairy farms, for the years 

2013-2016, and generated counterfactuals along a climate-

defined decision boundary between “normal climate” and 

“outlier climate” cases.  They generated >2,500 synthetic 

outlier cases from the 2013-2016 dataset using the case-based 

counterfactual method and then checked the predictive 

accuracy of the model using these synthetic cases, on the 

climate-disrupted year of 2018. They found significant 

improvements in prediction accuracy, when the dataset was 

augmented with these outlier-counterfactuals; specifically in 

those months in which climate-disruption occurred.  Temraz 

et al. [2021] argue that the counterfactual method does 

something akin to creating a local adaptation-rule that is then 

used to generate new, synthetic cases.  Notably, they found 

that the results improved most for counterfactuals generated 

by the case-based counterfactual method; that is, a 

benchmark, optimization-based counterfactual method does 

not show similar improvements in accuracy [Mothilal et al., 

2020]. Furthermore, Temraz and Keane [2021] have shown 

that these counterfactual benefits for data augmentation 

generalize to a wide range of datasets, for many different 

classifiers (including an MLP); notably, the counterfactual 

method also did better than the popular SMOTE data 

augmentation technique [Chawla et al., 2002].  In short, this 

initial work suggests that the CBR benefits shown for DL in 

XAI, extend to Data Augmentation too.   

6 Conclusions, Issues, and Futures 

In this paper, we have explored a line of work showing 
interesting synergies between DL and CBR focused on the 
problem of XAI (and Data Augmentation). All of these 
solutions conform to the revised definition of twin systems 
outlined earlier.  
      For us, the most notable aspect of this work is the extent 
to which the case-based approach delivers good solutions in 
these problem domains. Indeed, in many cases, the case-
based solution appears to be among the best solutions in the 
field.  Furthermore, different CBR techniques can operate off 
different functional aspects of DL models (i.e., feature 
contributions, discriminative features, exceptionality, 
predictive outcomes). Indeed, in some cases – as in 
counterfactuals – there seems to be some flexibility with 
respect to what functionalities need to be mapped from DL to 
CBR, raising the issue of which are optimal for the best 
outcomes.   A final takeaway, perhaps, is the richness of the 
synergies that potentially exist in this DL-CBR interaction; 
here, we have looked in depth at one area and just touched on 
another. When one considers other potential problem areas, a 
bright and interesting future seems to await researchers in 
exploring this DeepCBR concept.  
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