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Increasing consumer awareness, scale of manufacture, and demand to ensure

safety, quality and sustainability have accelerated the need for rapid, reliable,

and accurate analytical techniques for food products. Spectroscopy, coupled

with Artificial Intelligence-enabled sensors and chemometric techniques, has

led to the fusion of data sources for dairy analytical applications. This article

provides an overview of the current spectroscopic technologies used in

the dairy industry, with an introduction to data fusion and the associated

methodologies used in spectroscopy-based data fusion. The relevance of data

fusion in the dairy industry is considered, focusing on its potential to improve

predictions for processing traits by chemometric techniques, such as principal

component analysis (PCA), partial least squares regression (PLS), and other

machine learning algorithms.
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1. Introduction

Sustainability and traceability are growing concerns for consumers who are
continuously informed about climate change and food security systems (1). Growing
consumer awareness about product quality and authenticity has led to an increased
need for fast, non-invasive analytical methods (2). Many traditional analysis methods
in this area are time-consuming and often require chemicals that can negatively impact
the environment. Spectroscopy has become a commonly used technique due to its ease
of use and application across a wide range of food nutrients, and the availability of
powerful downstream chemometric tools for data interpretation. Different spectroscopy
techniques have been applied to measure composition, authenticity (3), adulteration (4),
physicochemical (5), and organoleptic characteristics in dairy applications. However,
each method is limited in the information it can provide, often leading to poor or
inaccurate calibrations. Combining multiple data sources through data fusion can
provide complementary information thus increasing robustness of prediction models.
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While data fusion is used in the food industry, there is relatively
little research reported on the application of this technique for
milk and dairy products (Figure 1). This paper is structured into
four sections. (Section “2. Data fusion”) introduces the topic
of data fusion and the types of data fusion that are commonly
used. (Section “3. Downstream method used with data fusion”)
considers the downstream methods used prior to data fusion.
(Section “4. Spectroscopic technologies and their usage in the
dairy industry”) discusses three spectral technologies used in
the dairy industry, i.e., Infrared, Raman and Fluorescence
spectroscopy, and finally (see the Section “5. Applications of
data fusion for the dairy industry) examines the applications
of data fusion to the dairy industry. Table 1 summarizes the
allocation of studies per section.

2. Data fusion

Data fusion refers to the process of combining
multiple data sources, typically to increase the accuracy
and precision of downstream predictive models. It has
become a popular method in the food industry in recent
years due to the increased use of various spectroscopic
analysis techniques. Each spectral technique has unique
measurement capability that when combined, provide
additional compositional information compared to when
used individually. Such methods have been used extensively
in remote sensing (7) and bioinformatics (8). There are
many alternative data fusion strategies, varying in terms
of their complexity and approach to combining data.
The main challenges associated with data fusion revolve
around finding an appropriate technique for integrating
heterogeneous data from multiple complex systems. For
instance, combining data from multiple instruments, especially
in the spectroscopy area, can lead to greater noise levels during
subsequent data analysis. The selection of an appropriate
fusion technique is usually case-dependent and can vary
greatly depending on the nature of the dataset. In many
studies, different data fusion techniques are evaluated
empirically, and these results are then compared to individual
source results to determine the optimum technique for
model development.

Many studies have shown that data fusion enhances
classification and prediction performance compared to relying
on individual sources (6). A review of information fusion in the
food industry reported that in 81% of articles, fusion methods
positively affected results, with only 2% of articles cited as
having negative effects compared to non-fusion methods (9).
Combining the datasets for different spectroscopic techniques,
and harnessing the complementary information provided by
each source suggests that it could be possible to improve
calibration models in cases where one spectroscopic approach
alone currently yields poor predictions.

Data fusion techniques can generally be divided into three
categories: low-level, mid-level, and high-level (10). A graphical
summary of the three methods can be seen in Figure 2.

2.1. Low-level data fusion

Involves concatenating the entire dataset from each source
into a new single dataset, on which a model is subsequently
built. Low-level fusion is the simplest method, as it does not
require the application of any feature extraction or variable
reduction technique. However, it does require scaling to ensure
all data blocks present with equal variance (11). A high volume
of data, often containing similar or correlated information is also
a limitation of low level data fusion (12).

2.2. Mid-level data fusion

Feature fusion reduces the dimensionality of each data
source before combining the resulting information. Usually, the
reduced dimensions take the form of PCA vectors or PLS latent
variables. Feature-level data extraction is used mainly with mid-
level data fusion. This involves taking features from different
datasets and then treating them equivalently. The resulting
features are concatenated into a single feature vector that is then
used in classification or regression analysis.

Mid level data fusion has advantages over low level data
fusion in that it can remove unwanted information through
dimension reduction techniques. Variable selection techniques
are also another way of selecting only relevant data from
each dataset thus reducing noise and unwanted information
(12). The variable reduction also reduces the computational
time for analysis.

2.3. High-level data fusion

Decision fusion builds a prediction model for each dataset
individually and subsequently combines the individual outputs
to produce a single consensus prediction. High level data fusion
often outperforms mid and low level data fusion as it removes
unwanted data while including all relevant data. Mid level and
high level data fusion gave better classification performance than
those produced on individual datasets (13).

2.4. Multi-block methods

Multi-view or multi-block methods combine data from
several datasets to provide complementary information that
can be used to describe objects or images more accurately.
Most multi-block approaches combine data from sources and
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FIGURE 1

The percentage of publications on data fusion in the food industry based on each sector (6).

add an X layer (where X is a matrix of variables) to the data,
often known as an augmented layer, which contains the X data
from the combined sources (14). We can then generate model
predictions based on either the augmented model or make
comparisons between each data group. Methods commonly
applied in conjunction with multi-block regression include
sequential and orthogonal partial least squares regression (SO-
PLS), parallel and orthogonal partial least squares regression
(PO-PLS), and canonical correlation analysis (15). SO-PLS is
suitable when there is a pattern or order associated with the
data blocks, while PO-PLS is used when equal importance
is assigned to each data block (14). Multi block component
analysis improved discrimination between different types of
cheeses combined with feature level data fusion (16). While
block scaling is often recommended for data fusion, sometimes
it can have a worse effect on results than other pre-processing
methods (17). It is therefore important to try various methods
in order to optimize the model. This is one of the biggest
disadvantages associated with data fusion analysis.

Multi block methods have similar approaches to data
processing as traditional multivariate analysis however, with
adaptations. Common methods used to identify common
components among data sets include consensus PCA,
multivariate curve resolution, hierarchical PCA, common
component and specific weight analysis. These methods are
limited as they do not provide unique information about
each dataset (18). Methods focused on identifying common
and distinct components include distinct and common
simultaneous component analysis, generalized singular value
decomposition, canonical correlation analysis, ComDim and
variable importance in projection.

A different method that retains each data block’s original
dimensionality is coupled matrix and tensor factorization.

Tensors are a generalized matrices and can be seen as multi-
dimensional arrays (19). This method is mostly suitable for
high dimensional data, as it eliminates the need to unfold the
data into a matrix and thus lose its original dimensionality.
Therefore, it is a suitable method for spectral data that could
often consist of more than two dimensions of data, such as time
dependent spectra. The main purpose of matrix factorization
is to extract features from each data set (20). One of the main
limitations in coupled matrix factorization is the inclusion of
both shared and unshared data in each data block.

3. Downstream methods used with
data fusion

3.1. Pre-processing

Spectroscopic data is usually pre-processed to reduce
the effects of noise and to enhance hidden or overlapping

TABLE 1 Division of references used per section.

Section Sub heading References

Section 1 Data fusion (1–14)

Section 2 Downstream methods used
in data fusion

(3, 7, 15–33)

Section 3 IR (31, 34–53)

Raman (54–68)

Fluorescence (69–87)

Section 4 Applications of data fusion
for the dairy industry

(3, 6, 27, 30, 49, 53,
88–100)

Search methods used were Web of Science, Google Scholar. Key words used in search
were data fusion, dairy, spectroscopy, information fusion, multi-block, milk.
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FIGURE 2

Graphical summary of three types of data fusion: Low level, mid level, and high level.

peaks. Pre-processing generally results in better downstream
prediction models, removing scatter effects and eliminating
baseline shifts. Savitzky–Golay smoothing, derivatives,
detrending and multiplicative scatter correction are all
common pre-processing techniques used in chemometrics.
Normalization methods include auto scaling, vector
normalization, standard normal variate (SNV), min-
max normalization or concentration normalization (12).
Normalization methods can be seen as column wise treatments
and are useful for ensuring equal weight is given to each variable
among the different datasets (21). In order to prevent bias
between variables of different datasets, it is important to weight
each data block correctly. For example, combining a spectral
dataset, which has a large number of variables with data such
as pH, could cause significant bias issues due to the dimension
difference between data blocks. Methods such as SO-PLS and
PO-PLS have been developed to cope with such dimensional
differences (21). SO-PLS is not affected by scaling of each block
as it is independent of the scaling, therefore is not affected by
variance differences between data blocks (22).

Variable selection (also called feature selection) is another
technique often used in spectroscopic data to reduce the

number of variables used to represent a dataset, often improving
predictive accuracy and algorithm scalability. Variable selection,
used in mid level data fusion, is performed using either
some automated selection criterion or manually based on the
wavelengths of interest (23). In the latter case, knowledge of
the sample’s chemical makeup is essential to prevent possible
important information from being removed from the spectra.
An understanding of the chemical nature of the sample is also
important when interpreting the results. PLS and PCA are
the most commonly used methods for variable selection and
dimension reduction. Interval PLS (iPLS) is a modification of
PLS and can be used as a variable selection method, which
divides the wavelengths into a user-defined number of intervals.
Based on the root mean square error of prediction (RMSEP) and
lowest number of latent variables, the algorithm then selects the
interval to be used in the model. This method is restrictive as it
determines only one interval region, potentially removing useful
information or retaining noisy regions. Adaptations of iPLS
include backward iPLS and sequential iPLS. Both methods work
similarly to iPLS, but allow more than one interval region to be
selected. The limitations of these methods are that all parameters
are user-defined, and for high volumes of data, the process
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can be computationally costly. Convolutional neural networks
(CNN) can also be used for feature extraction (24). However,
this has mainly been used with hyperspectral imaging data (25).
The main advantage of CNN is the reduction of pixels from
hyperspectral image data, and thus a reduction in computation.

An investigation into the use of different pre-processing
techniques with data fusion was carried out by Mishra et al.
(26). The authors argued that different measurement techniques
can provide different levels of precision and information but
will typically include unwanted variation. In spectroscopic data,
this unwanted information often comes in the form of baseline
shifts, light scattering, and noise from an instrument or the
environment, and heterogeneity in the sample state. Several
pre-processing methods are used to remove this unwanted
information, and some have already been discussed in this
article; however, to date, there is no gold standard for pre-
processing this form of data. When carrying out pre-processing,
there is a risk that some useful information will be lost or
irrelevant data will not be removed. A fusion of pre-processing
methods was conducted to allow all complementary information
from each technique to be combined and used together (26).
The same researchers further validated their claims by showing
that a fusion of scatter correction techniques on near infrared
spectroscopy (NIR) spectra led to improved prediction models
for tablet properties (27).

3.2. Classification and clustering
methods

Data fusion is often used for classification or discrimination
purposes, where labeled data is available. However, when
performing exploratory analysis, clustering methods can be
employed in conjunction with data fusion by grouping data
based on similar information without the requirement for
any supervision (28, 29). Some of the common methods
used for data fusion with machine learning are discussed
(30). It highlights some of the main challenges of dealing
with large amounts of data from different sources. However,
clustering techniques do not work well when there is a
significant level of noise in the dataset (e.g., due to inaccurate
measurements). The most widely adopted clustering approach
is the standard k-means algorithm, which attempts to group
the data into k clusters using an iterative centroid-based
approach. This approach is commonly used for hyperspectral
imaging analysis (31). The user must pre-specify the number
of desired clusters, which can be seen as one of the primary
disadvantages of this technique. Various modifications to
this approach are also often used depending on the dataset
(e.g., the use of different distance measures or initialization
strategies). Unsupervised clustering methods such as PCA
and k-means have the potential to be used as screening
tools in the dairy industry. FTIR combined with different

clustering techniques was used to detect atypical milk prior to
processing (32). While the clustering methods used successfully
identified atypical milk, the researchers acknowledged that
an unsupervised method for screening relies on a “typical”
milk spectrum for comparison. It may be possible that the
screening approach could detect atypical milk that is not
undesirable, such as milk that has higher than normal solids
content compared to undesirable atypical milk such as milk
adulterated with water. In terms of supervised methods, PLS-
DA provides a dimension reduction method, similar to PCA.
However, while PCA only looks at the variance in the X
data (variables), PLS-DA also considers the variance in Y
data (reference data) and tries to correlate X with Y. It is
useful when the reference data is categorical. Other popular
classification methods used in conjunction with data fusion
include artificial neural networks (ANNs), k-Nearest Neighbors
(kNN), and random forest algorithms (33). ANNs represent
a widely adopted family of non-linear modeling technique
used to predict outcomes based on query inputs and an
annotated training set. The most widely used ANN variant is
backpropagation (BPNN) which has been used to recognize
patterns in various food products (6). KNN is a discriminant
analysis technique that is useful for classification. KNN works
by selecting K- neighbors, and tries to predict the class of an
unknown sample by comparing it to its nearest neighbors. The
class of the predicted sample is based on the class with the most
nearest neighbors (101).

3.3. Regression methods

Data fusion can also be used to improve regression models
to predict the composition or quantify a substance. The most
commonly used technique in spectroscopy is PLS. Generally,
this model works quite well and is used in many applications
in the food and agricultural industry (34–36). PCR is another
linear method that is based on PCA. This approach uses
the principal components from PCA as predictor variables
and fits a linear regression model on the components. Non-
linear regression is also used in chemometrics with stepwise
regression, ridge regression, elastic net, and LASSO regression
among the more commonly used examples (37). These methods
are helpful when there is multicollinearity present in the
data (38).

4. Spectroscopic technologies and
their usage in the dairy industry

4.1. Infrared spectroscopy

Infrared (IR) spectroscopy is a secondary analysis method,
which relies on calibration models as a quantification method.
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IR spectroscopy measures bond vibrations in molecules caused
by a change in dipole at specific frequencies (39). Near-
infrared and mid-infrared are the two most commonly used IR
spectroscopic techniques in the dairy sector.

Near infrared spectroscopy (NIR) approaches provide an
advantage over mid infrared spectroscopy (MIR) because they
can use longer path lengths with easier-to-use optical equipment
(40). Fourier Transformed (FT)-NIR has become popular
for online and at-line process control in the dairy industry
with many practical applications such as the determination
of moisture, protein, fat and lactic acid (41, 42). FT-NIR
has also been used by Grassi et al. (43) to monitor milk
coagulation after the addition of rennet. The study found that
an FT-NIR probe could successfully monitor coagulation in
real time when combined with multivariate curve resolution
and alternating least squares for data analysis. A NIR fiber
optic probe was also used to measure carbohydrate and protein
content in infant formula powder with root mean square error
of prediction (RMSEP) of 1.89% under static conditions and
2.73% under motion conditions (0.15 m/s) (44). While these
methods highlight the potential of NIR for process monitoring
and control, lack of expert knowledge of chemometrics and data
analytics still provides a challenge to the sector.

The MIR region is found between 4,000 and 400 cm−1.
Characteristic absorption bands have been associated with
major functional groups found in food (45). Numerous studies
have found that the amide I region is associated with secondary
structural characteristics of milk proteins (46–48).

MIR is widely used in the dairy industry to rapidly quantify
milk composition (49). In many countries, MIR is used as
an official method of milk quantification for protein, fat,
lactose, and urea. MIR has been recently used to predict milk
functionality traits with varying levels of success. Calamari et al.
(50) found linear regression suitable for predicting titratable
acidity in milk with an R2 value of 0.96 and RMSE of 0.09.
Technological traits of buffalo milk were predicted using FTIR,
including rennet coagulation time (RCT), pH and curd firming
time (k20 min). Both RCT and k20 min had an R2

cv of 0.31
and 0.27, respectively, while pH was higher with an R2

cv

of 0.76 [Manuelian et al. (102)]. Another study compared
Bayesian regression with partial least squares regression (PLS)
for technological traits such as RCT and curd yield and
found that Bayesian ridge regression outperformed PLS for the
prediction of RCT (R2 of 0.75 vs. 0.53) and curd yield (0.79
to 0.72) (36). However, Bayesian regression are usually more
computationally intensive than PLS regression models.

A study on the prediction of milk coagulation properties
using MIR reported an R2 value of 0.66 for titratable acidity and
0.59 for RCT using PLS regression (51). The findings of studies
on the prediction of individual proteins (for example, α-casein,
β -casein, β -lactoglobulin, α -lactalbumin, and lactoferrin milk)
are contrasting. Luginbühl (52) reported standard error of
cross-validation (SECV) values < 0.1 and R2 values greater

than 0.99 for each model developed. This is higher than the
values obtained by Bonfatti (53), who reported an R2 value
of 0.8 for casein. Promising results for a prediction model for
casein were developed by Calamari (54), in contrast to (55),
who did not find predictions for casein accurate (R2 = 0.74)
enough to be used for model development. However, the
calibration set used by Calamari (54) consisted of 89 samples,
while the study by McDermott et al. (55) used 730 samples.
However, both studies results were lower than those reported
by Sanchez et al. (56), who reported good predictions for
casein fractions (R2 between 0.8 and 0.92). It was argued
(57) that casein predictions in the previous models were
based on the percentage of casein within the total protein
content. Therefore, if the casein-to-protein ratio changes, the
prediction models are inaccurate as the prediction is based on
total protein and assumes that casein is 80% of total protein.
Instead, chymosin was used to detect spectral changes correlated
with casein through enzyme hydrolysis. Significant spectral
variations were observed at different concentrations of casein
(CN). Chymosin cleaves kappa CN at the 105–106 amino
acid position causing casein micelles to coagulate (58) while
whey proteins remain in solution. The study also concluded
that casein concentration directly affected the coagulation of
curd. Specific milk components have also been measured using
MIR, for example, fatty acids and amino acids (55, 59). β CN
phenotypes have recently been identified using FTIR (60). These
researchers used a combination of FTIR, principal component
analysis (PCA), and chemometrics to distinguish between
different genetic variants of β CN in milk. This is relevant due to
the increased consumer awareness of A2 milk; therefore, a tool
to identify A1 or A2 milk is required to authenticate products.

4.2. Raman spectroscopy

Raman spectroscopy is another method used in vibrational
spectroscopy to obtain information on the chemical
composition of a substance. While IR spectroscopy is based on
absorption, Raman is based on inelastic scattering (61). It is
sensitive to interference such as fluorescence, which is often not
a problem in IR spectroscopy. Advantages of Raman include
high specificity with non-overlapping peaks. Raman signals
of water are weak; therefore, this approach can provide useful
information on liquid samples without the effects of water
masking signals, which has been identified as an issue in IR
spectroscopy (62). The main wavelengths used in dairy analysis
with Raman are reported in Almeida et al. (63) and Batesttin
et al. (64). Similar to other spectroscopic techniques, the main
advantages include its non-destructive nature on samples and
its rapid analysis with little sample preparation required. The
most commonly used Raman techniques are summarized in
Table 2.
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TABLE 2 Various types of Raman spectroscopy and their
advantages (65).

Techniques Advantages

Dispersive Raman Spectroscopy Suitable for liquid samples.

Fourier transform (FT) Raman
spectroscopy

Reduced interference from
fluorescence, high spectral resolution.

Surface-enhanced Raman
Spectroscopy (SERS)

High sensitivity and specificity.

Spatially offset Raman
spectroscopy

Reduce fluorescence, more effective
illumination, allows for analysis of
various types of samples.

Raman has been used to effectively measure fat in milk
and milk products (66, 67). However, a low signal-to-noise
ratio can limit its potential in low fat or fat-free products.
A comparison of Raman and FTIR found while Raman was
useful for measuring milk components, FTIR provided better
quality results for macromolecules (68). Lactose has been
successfully measured in milk using Raman (69). C-O-H
bending at 1,087 cm−1 was used to quantify lactose with an R2

value of 0.99 based on a linear regression model. Different laser
settings can also cause interference requiring pre-processing.
Most of the work done in dairy products has been on milk
fats, which yielded the most accurate results. Milk fat content
was determined using Raman combined with PLS with low root
mean square error (RMSE) (0.16) and R2 validation of 0.97 (67).
A least squares fitting approach to characterize the nutritional
composition of milk gave excellent correlations for fat and
lactose (r = 0.93 and 0.91) (70). Numerous studies have used
Raman to determine conjugated linoleic acid (CLA) content in
milk. Three specific bands in Raman spectra were found to be
related to CLA’s cis Trans and conjugated bonds (71). PLS and
multiple linear regression (MLR) using these bands successfully
predicted CLA in milk with MLR slightly out-performing
PLS (R = 0.975 vs. 0.951). Raman has also been successfully
used to detect adulterants in milk, for example, melamine in
infant formula. Almeida et al. (63) explored the use of FT-
Raman for milk powder screening. PCA analysis was used to
separate whole milk powder, skim milk powder and adulterated
powders. Partial least squares discriminant analysis (PLS-DA)
models successfully classified 100% of powders adulterated with
varying amounts of whey. It has been used to quantify the
composition of milk powders (72, 73), i.e., PLS regression for
prediction of fat and protein. The effect of temperature was
investigated (72) and found that low and high temperatures
tended to over- and under-predict milk fat, respectively. Some
research has been conducted to examine the use of Raman
to monitor milk processing. Conformational changes in whey
proteins and fouling of heat exchangers using micro Raman
spectroscopy were investigated (74). The amide I region at
approx. 1,670 cm−1 was found to show differences between
dry powder and aggregated powder, which can be interpreted

as increases in β-turns upon heating and an intensity decrease
at 940 cm−1 was associated with loss of alpha helix structures.
However, in Raman the signal for protein is much weaker than
in IR spectroscopy and therefore is not used as frequently for
measuring protein.

4.3. Fluorescence spectroscopy

Fluorescence spectroscopy can be used to analyse the
physico - chemical properties of various dairy products. It has
gained popularity mainly due to improved instrumentation
and advances in data analytics (multivariate and chemometric
analysis). Proteins and lipids often contain specific fluorophore
regions; hence, fluorescence spectroscopy can pick up small
changes in their structure due to its high sensitivity. However,
like other spectroscopic methods, it requires instrument
standardization and validation for use at a large industrial scale.
Traditional fluorescence measures fluorescent emission from
fluorophores in clear solutions (75). Scattering and fluorescent
quenching affect measurements of opaque or solid samples.
Fluorescence quenching, a process that reduces the fluorescence
intensity of a sample, could be used to characterize interactions
between flavonoids and proteins in dairy ingredients (76). The
study showed that fluorescence quenching was due to ligand
binding between pelargonidin and proteins. Due to the nature
of milk, it can be difficult to measure using a photometric
method. Therefore, a different approach has been used: front-
face fluorescence spectroscopy (FFFS). This technique only
measures the fluorescence emitted from the sample’s surface
and removes problems associated with scatter and quenching.
The advantages of FFFS are that it can be used on turbid
liquids and powders, and no sample preparation is required.
Andersen and Mortensen (75) provide an in-depth review of
the use of fluorescence spectroscopy in the analysis of dairy
products. A further review on the application of fluorescence
spectroscopy in dairy processing has been conducted by Shaikh
and O’Donnell (77). The fluorescence in milk products mainly
lies in riboflavin, vitamin A, aromatic amino acids (tryptophan,
phenylalanine, and tyrosine), NADH, lipid oxidation products,
and other chemical compounds that induce fluorescence
emission. Most studies have focused on the fluorescence of
tryptophan when measuring the protein structure in milk
products. The maxima of tryptophan emission peaks were
identified at 343 nm, and a direct relationship between heat
treatment and fluorescence properties was illustrated by the
change in emission spectra when normal ultra-high temperature
(UHT) milk was compared to over-heated UHT milk (78).
The denaturation of protein during heat treatment alters the
tryptophan region of proteins. Fluorescence increases with
increasing heat treatment in milk, mainly due to the unfolding of
the protein structure, resulting in exposure of more tryptophan
residues (75). Heat treatments also cause the production of
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Maillard reactions, which are measured at 440 nm in the
emission spectrum. The study by Kulmyrzaev and Dufour (78)
identified that FFFS can monitor the production of Maillard
reactions, mainly lactulose and furosine, and an increase in
intensity at 430 nm indicates that other fluorescent compounds
are being produced in UHT milk; this was not seen in
pasteurized milk. Using principal component regression, an
R2 value of 0.95 was obtained for comparison of predicted
versus reference furosine while an R2 = 0.987 was found for
lactulose. Lactulose and furosine are not fluorophores and
therefore, the correlation is by an indirect measurement between
the tryptophan spectra and the concentration of lactulose
and furosine. PCA can be used to monitor changes between
raw milk, heated, homogenized and homogenized and heated
samples (79). The first two principal components captured 96%
of total variance for the tryptophan emission spectrum data and
over 99% of the total variance for Vitamin A. A more recent
study (80) discriminated milk based on thermal treatment using
PCA. Strong correlations were found between spectra, alkaline
phosphate, and β lactoglobulin using principal component
regression (PCR).

Fluorescence spectroscopy has been used to detect changes
in the structure of casein micelles during coagulation (81)
and measure the binding properties of β-LG during folding
(82). This technique provides another tool for determining,
at a molecular level, the structural changes that occur
during milk coagulation and heating. Fluorescence spectroscopy
was used to investigate the effects of heating milk on
curcumin binding to CN (83). Milk was heated to 80◦C,
and the fluorescence intensity of curcumin increased. Front-
face fluorescence has become popular as a rapid, non-
invasive method of analysis for fluorescent molecules and their
interactions in biological samples.

Casein is the primary component that coagulates in
milk during cheese making; therefore, a rapid quantification
method can facilitate the identification of optimal coagulum
cut time during manufacture. Tryptophan and riboflavin, both
intrinsic fluorophores, could be used to monitor rennet-induced
coagulation of milk by measuring the change in fluorescence
intensity during coagulation (84). Acidification of casein can
also be measured using FFFS as, when casein is in an acidic
environment, it undergoes structural changes that increase the
fluorescence intensity of tryptophan. This is associated with
structural and conformational changes in the casein micelle as
colloidal casein phosphate (CCP) dissociates from the micelle at
low pH, exposing more tryptophan residues (85). In the study,
casein was precipitated using acetic acid prior to fluorescence
analysis. PLS and elastic net regression models both performed
well in predicting casein% with R2 value of 0.91 for both PLS
and elastic net and cross validated RMSE of 0.12% (85). Heat-
induced coagulation was also measured using fluorescence (86).
The study was based on using tryptophan as marker, where
quenching was observed upon coagulation of milk. The change

in tryptophan emission spectra has been related to structural
changes in proteins, such as protein denaturation (86).

Front-face fluorescence spectroscopy has also been used
to monitor thermal processing in milk; however, no sample
preparation was required compared to previous studies (87).
The authors found a strong correlation (R2 = 0.95) between
FFFS and the reference method, indicating that FFFS can
be used with no sample preparation for measuring thermal
processes in milk. Riboflavin is also used as an indicator
for lipid-induced oxidation. Miquel Becker et al. (88) used
PLS with a prediction error of 0.0092 mg riboflavin/100 g
yogurt to detect riboflavin in yogurt. The study demonstrated
that riboflavin could be used as an early indication of
degradation during storage.

Given current awareness regarding product origin and
traceability in the dairy industry, a rapid technique based
on fluorescence and riboflavin could be useful in confirming
product authenticity. Fluorescence has also been used to
authenticate milk from grass-fed cows (89). The levels of
riboflavin and chlorophyll metabolites were measured in the
milk and shown to be significantly higher in grass-fed cows
than in grain or silage-fed cows, most likely due to the higher
level of chlorophyll in fresh grass. Tryptophan and riboflavin
have been used as intrinsic indices for online measurement
in milk processing. The geographic origin of milk has been
determined through the use of discriminant analysis using
fluorescence spectroscopy (90). Although the dataset was small,
the calibration model classified 100% of the samples correctly,
and the validation model had a classification accuracy of 69%.
In particular, the lowland samples were well separated from the
upland and midland samples. The sample set is however, too
small to be able to confirm how effective this method is.

The combination of data from fluorescence and MIR,
which provides detailed information about the chemical
composition of milk, could offer a more effective approach
when developing prediction models for processing traits, such
as rennet coagulation time and heat stability. This is discussed
in more detail below.

5. Applications of data fusion for
the dairy industry

Quality and authentication are two important concepts in
the dairy industry. Products are valued based on the quality
of ingredients and often from the origin of where they are
produced. Adulteration, therefore, is an issue in the dairy
industry. Food adulteration is the addition of cheaper materials
into a food product to increase the amount of the product or
to increase specific components. One of the most well known
cases of adulteration in the dairy sector occurred in 2008
in China where melamine was used to increase the nitrogen
content of milk. The milk was used in the manufacture of infant
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formula and resulted in over 50,000 babies becoming seriously
ill (91). This, and other incidents, highlight the need for rapid
detection methods.

Spectroscopy has been a widely used method for milk
compositional analysis (59, 92–94) and for detecting product
adulteration over the last few years (95). There are many
benefits of spectroscopy compared to traditional analytical
techniques, as it is fast, non-destructive, requires no harsh
chemicals, and is cost-effective. However, each spectroscopy
technique has its limitations, as discussed previously. It is
an analytical measurement that relies on a calibration model
for compositional or classification analysis. Combining spectra
from different wavelength regions has proven in some cases to be
more accurate than individual spectra from one region (6, 96).
In recent years data fusion has been adopted as a novel method
to increase prediction accuracy for classification and regression
analysis in the food industry (11, 97). The distribution (%) of
publications on data fusion for each sector of the food industry
is shown in Figure 1. The area with the highest number of
publications incorperating data fusion techniques is alcoholic
beverages, such as beer and wine.

Providence is an important consideration for the
dairy sector, and the cows’ diet influences the levels of
constituents in milk responsible for its authentication. Due to
increasing demands for improved sustainability, forage-based
diets are considered environmentally friendly and better
for animal welfare.

Thus, the use of animal diet to discriminate between milk
from different regions can provide a valuable tool for the
industry and consumer. O’Callaghan et al. (98) discussed the
effects of pasture-based diets on milk metabolomics, which can
be used to identify the diet type of a cow. A study by Riuzzi
(99) used mid-level data fusion to authenticate milk samples
from different forage-based diets. With the growing demand
for traceability, this analysis could provide an accurate method
for milk authentication. Data fusion was used to improve the
discrimination ability of PCA to identify milk that has been
fortified with milk powder (100). Electronic tongue and nose
were used to distinguish between UHT and pasteurized milk
combined with the use of PCA (103).

A comparative study (104) applied PLS and support vector
machine (SVM) on full spectra and wavelength-selected spectra
for Vis-NIR and Raman data. Compared individual models with
data fusion models combining both Vis-NIR and Raman for
the discrimination of storage time and temperature on infant
formula. Low, mid, and high level data fusion models were
compared in each case. In the case of storage temperature
discrimination, the full spectral dataset for Vis-NIR using SVM
was the most effective model while mid-level data fusion using
SVM produced the best model for storage time. Zhao (105)
compared laser induced breakdown spectroscopy (LIBS), FTIR
and Raman prediction models for quantification of calcium in
infant formula. Low and mid level data fusion methods were

also compared. In this case the prediction model developed from
LIBS was the most accurate with an R2

cv = 0.99, while the mid
level data fusion model achieved R2

cv = 0.97.
Milk processing is an integral part of product development.

Heating, drying, and processing milk affects its structure,
affecting the quality or development of milk-derived products.
Many studies have tried to develop calibrations for NIR and MIR
instruments to predict processability traits such as heat stability
and rennet coagulation. However, the calibration models using
PLS have been unsuccessful (35, 55, 106). The possibility of
data fusion, combined with other chemometric and machine
learning techniques, could allow these processability traits to be
accurately predicted. The increased use of spectral sensors in
process unit operations increases the possibility for using data
fusion methods in dairy manufacturing facilities.

A novel approach to monitor milk processing used
a combination of raw and first derivative spectra with
autoencoder neural networks to detect changes in milk during
processing (107). An auto-encoder was trained using 1.5%
UHT milk. The combined data improved anomaly detection
of fat, temperature and production compared to either data
set; however, the raw spectra alone proved more accurate for
detecting water or cleaning solution in the milk. This method
was used during processing, and such techniques would allow
for early detection of abnormal changes and prevent problems
further down the processing line. This provides an advantage
to the processor by reducing the need for laborious analytical
methods. However, continuous maintenance of data fusion
calibrations is required to avoid inaccurate measurements.

6. Conclusion/Final remarks

Data fusion has been demonstrated in various settings
as providing more accurate predictions compared to using
one data source. In particular, accurate models are needed
for milk analysis and processability, authenticity, quality and
adulteration due to the increased awareness around food
traceability. Numerous analytical methods are used to create
data fusion models, and the optimal technique is often sample
dependent, as there is no “one-size-fits-all” approach. Pre-
processing is usually required prior to fusion, to remove noise,
reduce variables and scale data blocks. However, it is important
not to excessively pre-process the data to a point where valuable
information is lost. For difficult-to-measure traits such as RCT,
heat stability and other milk processing traits, data fusion
could provide further benefits by combining complementary
information from different spectral technologies, leading to
increased prediction accuracy. While data fusion can provide
rapid and accurate measurement, the initial calibration and
model development is time consuming and requires expert
knowledge of sample chemistry and machine learning.
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