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Abstract

This paper introduces PreP-OCR, a two-stage
pipeline that combines document image restora-
tion with semantic-aware post-OCR correction
to improve text extraction from degraded his-
torical documents. Our key innovation lies in
jointly optimizing image clarity and linguis-
tic consistency. First, we generate synthetic
image pairs with randomized text fonts, lay-
outs, and degradations. An image restora-
tion model is trained on this synthetic data,
using multi-directional patch extraction and
fusion to process large images. Second, a
ByT5 post-corrector, fine-tuned on synthetic
historical text training pairs, addresses any re-
maining OCR errors. Detailed experiments on
13,831 pages of real historical documents in
English, French, and Spanish show that PreP-
OCR pipeline reduces character error rates by
63.9–70.3% compared to OCR on raw images.
Our pipeline demonstrates the potential of in-
tegrating image restoration with linguistic er-
ror correction for digitizing historical archives.
https://github.com/NikoGuan/PreP-OCR

1 Introduction

In the era of massive document digitization, ensur-
ing accurate text extraction from degraded images
has become increasingly important (Shen et al.,
2021). Many historical documents, scanned books,
and archival materials suffer from various forms
of degradation – such as blur, noise, ink bleeding,
and other artifacts – due to aging and suboptimal
scanning conditions (Pardo et al., 2024). These
degradations not only affect the visual quality of
the images, but can also severely impact the result-
ing performance of Optical Character Recognition
(OCR) systems, leading to high error rates in ex-
tracted text (Hegghammer, 2022).

To address these challenges, this paper intro-
duces PreP-OCR, a novel synthetic-data-driven
two-stage pipeline that first restores degraded im-

ages for OCR-based text extraction and then en-
hances the extracted text through post-processing.

To effectively train the image restoration model,
we employ a comprehensive synthetic data gen-
eration method that simulates realistic document
degradation. First, we render clean text images
with diverse typography, then we apply degrada-
tion operations in a randomized order with stochas-
tic parameters (see Section 4.2), yielding a richly
varied dataset, allowing models to learn a robust
mapping between the original degraded inputs and
their clean counterparts. Additionally, we propose
a multi-directional patch extraction and fusion strat-
egy to efficiently process larger images and further
enhance overall image quality (see Section 4.3).
Figure 6 shows examples of the process.

Following image restoration, in the next step
of our proposed pipeline the restored images are
fed into an OCR system. Although restoration sig-
nificantly reduces structural ambiguities, it may
not fully eliminate OCR errors. To correct any
residual recognition mistakes, we incorporate a
ByT5 post-OCR correction module that semanti-
cally recovers errors, even in cases where images
are severely degraded and challenging to fully re-
store (see Section 4.4). Consequently, the restora-
tion stage primarily resolves ambiguities in char-
acter shapes, yielding more legible images that are
easier for OCR systems to recognize, while the
post-correction stage mitigates systematic OCR er-
rors through sequence-to-sequence translation.

In Sections 4.1 and 5.1, we describe the collec-
tion of numerous degraded historical book images.
These images were scanned using various OCR sys-
tems, and we then constructed evaluation datasets
with their corresponding ground truth texts. In
Sections 5.2–5.3, we use the data to assess text re-
construction quality in different patch regions and
evaluate the effectiveness of our fusion strategy.
Finally, in Sections 5.4–5.5, we test the PreP-OCR
pipeline on English, French, and Spanish datasets.

https://github.com/NikoGuan/PreP-OCR


2 Related Work

Extensive research has demonstrated that image
pre-processing can significantly improve the perfor-
mance of deep learning models (Vidal and Amigo,
2012; Salvi et al., 2021). However, pre-processing
within the context of OCR remains relatively under-
explored, with existing methods primarily focus-
ing on contrast enhancement and color adjustment
(Gupta et al., 2007; Harraj and Raissouni, 2015;
Bui et al., 2017).

Recent studies in image deblurring have intro-
duced more advanced restoration techniques that
could also benefit OCR. Early image restoration
methods were primarily based on CNNs (Dong
et al., 2015a,b; Zhang et al., 2017; Cho et al., 2021).
Subsequent research introduced more elaborate ar-
chitectures, such as residual blocks (Kim et al.,
2016; Zhang et al., 2021), generative adversarial
networks (GANs) (Pathak et al., 2016; Gulrajani
et al., 2017; Wang et al., 2018; Kupyn et al., 2019),
and attention mechanisms (Zhang et al., 2018; Yu
et al., 2018). Transformers (Vaswani, 2017), which
model long-range dependencies, have advanced
NLP and computer vision and are now widely used
in image restoration (Chen et al., 2021; Liang et al.,
2021; Zamir et al., 2022).

Diffusion models have emerged as a powerful
alternative for generative image tasks, optimizing
a parameterized Markov chain to approximate the
target distribution more accurately than many other
generative frameworks. Examples in restoration
include DiffIR (Xia et al., 2023) and ResShift (Yue
et al., 2024), both of which are diffusion-based ap-
proaches. Several studies have also used diffusion
models together with textual information to recover
the appearance of ancient stele inscriptions (Zhu
et al., 2024; Yang et al., 2025). In our work, we
harness image-restoration models to pre-process
degraded images prior to applying OCR.

The post-OCR task aims to correct errors in
OCR outputs, with early methods relying on dic-
tionary lookups or spelling checkers (Furrer and
Volk, 2011; Bassil and Alwani, 2012; Estrella and
Paliza, 2014; Kettunen, 2016). More recent ap-
proaches treat post-OCR correction as a sequence-
to-sequence task, leveraging neural machine trans-
lation (NMT) models, such as BERT (Devlin et al.,
2019), BART (Lewis, 2019) and T5 (Raffel et al.,
2020) (Amrhein and Clematide, 2018; Nguyen
et al., 2020; Soper et al., 2021; Maheshwari et al.,
2022). Several comparative studies have shown

that byte-level models, such as ByT5 (Xue et al.,
2022), often achieve the best performance for post-
OCR tasks (Maheshwari et al., 2022; Löfgren
and Dannélls, 2024; Guan et al., 2024; Guan and
Greene, 2024b).

Both image restoration and post-OCR correction
require paired training data, and the availability
of abundant, high-quality data is critical for suc-
cess (Rijhwani et al., 2020; Mazumder et al., 2024).
Consequently, researchers have explored a variety
of strategies for generating synthetic data as a form
of data augmentation (Hamdi et al., 2023; Shorten
and Khoshgoftaar, 2019). For image deblurring
and text-recognition, common techniques involve
injecting noise into clean images to mimic real-
world degradation (Yuan et al., 2007; Krishna et al.,
2018; Rim et al., 2022; Li et al., 2023; Hamdi et al.,
2023), or using methods such as StableDiffusion
(Rombach et al., 2022) to create paired image edits
(Brooks et al., 2023). In the post-OCR domain,
synthetic training pairs are often produced by in-
serting controlled errors into clean text (D’hondt
et al., 2017; Grundkiewicz et al., 2019; Ignat et al.,
2022; Jasonarson et al., 2023; Guan and Greene,
2024a; Guan et al., 2024).

3 Problem Formulation

Our task addresses two sequential objectives: (1)
restoring degraded images to enhance legibility,
and (2) recovering accurate textual content from
these images. We formalize these goals as follows.

Image restoration objective. Let Id, I ∈ RH×W

denote the degraded input and its sharp ground-
truth image, respectively. A restoration model
R aims to produce a restored image Î = R(Id),
where the objective is to maximize the Peak-Signal-
to-Noise Ratio (PSNR) (Hore and Ziou, 2010) be-
tween Î and I , such that:

R∗ = argmax
R

PSNR(R(Id), I),

Text recovery objective. Let T represent the
ground-truth text sequence of image Id. The re-
stored image Î is first processed by an OCR model
O, yielding predicted text T ′ = O(Î). This pre-
dicted text T ′ is then refined by a post-processing
module P , resulting in T̂ = P(T ′). The objective
here is to minimize the Character Error Rate (CER)
between T̂ and T :

P∗ = argmin
P

CER(P(O(Î)), T ),



These dual objectives are addressed in our two-
stage pipeline. First, the restoration model R is
optimized using synthetic paired data to restore the
book images, directly enhancing character legibil-
ity (see Section 4.2). Second, the post-processor
P is trained on synthetic training pairs simulating
OCR errors to correct residual recognition mistakes
(see Section 4.4). The image restoration stage re-
duces structural ambiguities in character shapes,
while the text correction stage addresses systematic
OCR errors through sequence-to-sequence transla-
tion. This cascaded approach ensures both pixel-
level fidelity in Î and semantic-level accuracy in
the final text output T̂ .

4 PreP Pipeline

4.1 Real Evaluation Data Collection

To evaluate the performance of a model trained
solely on synthetic data when applied to real-world
data, we constructed a new corpus as follows. We
curated a collection of 30 English books (9,606
pages), 5 Spanish books (2,404 pages), and 5
French books (1,821 pages) from the 15th to 19th
centuries. Ground truth (GT) texts were sourced
from clean digital books available on Project Guten-
berg1, while a set of corresponding scanned PDF
files containing degraded text images was obtained
from Open Library2. We intentionally selected
older books exhibiting visible damage, as shown
in the images in Figure 1. Text alignment between
the OCR outputs and GT was performed using the
RETAS framework (Yalniz and Manmatha, 2011),
which employs dynamic programming for robust
sequence matching.

Figure 1: Example images of digitized pages from his-
torical books, which are often affected by degraded text,
aging pages, and low capture resolution.

For subsequent experiments, we pre-process
the images through denoising before employing
OCR. Comparative CER analysis will be conducted
across three pipelines: raw images (direct OCR

1https://www.gutenberg.org
2https://openlibrary.org

on original scanned pages), Pre-process (OCR af-
ter image restoration), and our proposed approach
PreP-process (image restoration combined with
OCR and post-correction).

4.2 Synthetic Data for Restoration
In image-to-image restoration tasks, paired data
consisting of a degraded input and its correspond-
ing clean reference is crucial for effective train-
ing. However, obtaining such paired data from
real-world documents is extremely challenging be-
cause authentic clean images and their degraded
counterparts are rarely available. To overcome this
limitation, we employ a synthetic data generation
approach that enables us to simulate realistic degra-
dation from scratch.

Our synthetic data pipeline begins by generating
a clean base image from textual content. To maxi-
mize OCR accuracy, we ignore color information
and work with grayscale images. First, we collect
various fonts for different languages and render
multi-line text with a range of stylistic variations,
including random indentation, character shifts, ro-
tation, and bending. Additionally, the text is ran-
domly tilted, and both line and character spacing
are varied to mimic the natural irregularities found
in printed documents. The generated base image
serves as the clean ground truth.

To simulate real-world degradations, next we
apply a series of controlled noise and distortion
operations. Specifically, the pipeline adds random
noise, performs resolution reduction, applies Gaus-
sian blurring, and overlays additional artifacts such
as random black or white patches of varying sizes,
white or black lines (simulating scratches or folds),
background textures, and stain overlays. The pro-
cess also includes random morphological opera-
tions (dilation and erosion) to further simulate text
imperfections. It is worth noting that these op-
erations are applied in random order, producing
diverse results depending on the sequence.

Since noise levels can vary in real-world digi-
tized documents, we predefine four noise levels
(level-1 to level-4). Higher levels introduce a wider
range of noise parameters, potentially resulting in
more degraded images. Additionally, 10% of the
noisy images are binarized using Otsu’s algorithm
(Yousefi, 2011). We also stitch together images
with different noise levels and fonts, as in real data,
different regions on a given page can exhibit vary-
ing degrees of degradation and typographic styles.

The detailed parameters for generating the base

https://www.gutenberg.org
https://openlibrary.org


Figure 2: Example of three sets of synthetic image data.
The leftmost image is the base image, while the image
to its right is the corresponding degraded image.

image and simulating noise levels are provided in
Appendix B. Example images generated using this
process are shown in Figure 2.

By pairing each original base image with its syn-
thetically degraded versions, we create a large and
diverse dataset. This synthetic data facilitates the
robust training of our restoration model, allowing
it to learn the complex mapping from degraded to
clean images. As demonstrated later in Section 5,
this can ultimately improve generalization perfor-
mance in real-world document restoration tasks.

4.3 Patch Extraction and Fusion

When processing large images, we first partition
them into multiple regions. To address stochastic
noise and local inconsistencies, we adopt a multi-
directional patch extraction strategy. Specifically,
for each degraded image, we scan it four times:
top-left to bottom-right, top-right to bottom-left,
bottom-left to top-right, and bottom-right to top-
left. Since image dimensions may not align per-
fectly with the patch stride, we pad only the edge
opposite the scanning direction to ensure a fully
integer-aligned pass over the entire image.

In each pass, 256×256 patches are extracted at
a stride of 128 pixels. Scanning from different
directions yields slightly different patches, mean-
ing even the same region in the original image
may appear with different neighboring contexts
in a patch—leading to varied predictions. After
restoring each patch, we discard the outer 64-pixel
border and retain only the central 128×128 region,
minimizing boundary artifacts. An example of the
multi-direction patch extraction process is provided
in Appendix A.

Each pixel in the final restored image is fused
by aggregating four independent predictions from
the four scanning directions. Specifically, for each
scanning direction k ∈ {1, 2, 3, 4}, the restoration
model R generates an intermediate restored image

Figure 3: The left panel shows a real degraded patch.
The four sub-panels in the center depict restored outputs
under different scanning directions, where the red cir-
cles highlight localized artifacts or noise. On the right
is the final fused result, in which these artifacts are ef-
fectively suppressed.

Îk. To merge these predictions and reduce arti-
facts, we perform a pixel-wise median operation
across the four resulting images. Formally, the final
restored image Î is computed as

Î[r, c, χ] = median
(
Îk[r, c, χ] | k ∈ {1, 2, 3, 4}

)
where χ is the grayscale intensity, r and c are the
row and column indices. This median operation
consolidates the consistent pixel values across dif-
ferent scanning paths, improving the stability and
quality of the final restored image. As shown in
Figure 3, the median fusion suppresses outlier pre-
dictions caused by artifacts and stochastic noise.

Our multi-directional scanning strategy aggre-
gates predictions from overlapping patches pro-
cessed through varied spatial contexts, analogous
to multi-view consensus mechanisms in image pro-
cessing. This approach enhances OCR outputs, as
demonstrated later in Section 5.3.

4.4 Post-OCR Correction
Building on the image restoration pipeline de-
scribed in Sections 4.2–4.3, our pipeline incorpo-
rates a post-processor to address residual OCR er-
rors. While the pre-processing stage enhances text
legibility, characteristic OCR mistakes persist due
to (1) morphological ambiguities in restored charac-
ters, and (2) linguistic context gaps in OCR engines.
To mitigate these, we implement an error correction
module based on Guan et al. (2024)’s synthetic data
approach, adapted to our pre-processing outputs.

We first extract the OCR error distribution from
a small post-OCR dataset – the ICDAR 2017 post-
OCR data (Chiron et al., 2017). Then, we inject
errors into clean text to generate a large-scale syn-
thetic training pair (T, T ′), the ByT5-base model
(Xue et al., 2022) P is then trained to map T ′ to T ,
leveraging byte-level tokenization to handle rare
characters from historical documents.



Specifically, we simulate OCR errors by replac-
ing characters in the clean text T according to error
distributions derived from the ICDAR. For exam-
ple, the letter “m” might have an error set such
as {"n": 0.001, "rn": 0.002, . . . }, where each er-
ror candidate is assigned an occurrence probabil-
ity. These error sets may include various symbols,
spaces, multi-character sequences, and the place-
holder “@”. We uniformly adjust the overall error
rate so that, as the error rate increases, characters
are more likely to be replaced by an erroneous ele-
ment, leading to a higher CER. After the replace-
ment process, any placeholders are removed from
the text. This procedure can simulate recognition,
insertion, deletion, and segmentation errors.

This design complements our image restoration
stage: while Section 4.3’s fusion reduces local ar-
tifacts, the post-processor resolves systemic OCR
errors through learned linguistic patterns. The com-
bined PreP-OCR pipeline thus addresses both vi-
sual ambiguities (via R) and semantic inconsisten-
cies (via P), as we observe later in Section 5.4.

5 Experiments

5.1 Exp. 1: OCR Performance

In our first experiment, we evaluate OCR perfor-
mance on the real book dataset described in Sec-
tion 4.1. While Tesseract has been the most widely
used OCR engine (Smith, 2007), recent advances
in Transformer-based models have led to the emer-
gence of general-purpose large language models
(LLMs) with strong visual capabilities, as well as
specialized LLMs for OCR.

For baseline evaluation, we employ three OCR
systems: Tesseract-5.5.0 (Smith, 2007); GOT, a
LLM designed for OCR tasks (Wei et al., 2024);
and GPT-4o-2024-08-06 (OpenAI, 2024). Details
are provided in Appendix C. We used the RETAS
framework (Yalniz and Manmatha, 2011) to align
the OCR outputs with the GT text. After alignment,
we computed the Character Error Rate (CER) and
Word Error Rate (WER) to assess each system’s
accuracy. Since text extracted from PDFs often
contains extraneous content that is not part of the
main body, any text segments that do not have a
corresponding match in the GT were discarded and
excluded from the CER calculation.

Table 1 shows the final results. We observe that
the LLM-based OCR systems are less stable than
Tesseract, often producing outliers characterized
by incomplete page outputs or extraneous content.

Model
English French Spanish

CER WER CER WER CER WER

Tesseract 5.91 (5.91) 26.70 (26.70) 5.16 (5.11) 27.21 (26.97) 7.12 (7.12) 27.13 (27.13)
GOT 11.18 (6.95) 35.12 (20.29) 6.32 (5.15) 28.53 (25.43) 12.84 (6.29) 46.10 (24.32)
GPT-4o 6.51 (2.34) 9.37 (3.43) 3.23 (1.93) 4.98 (4.68) 3.43 (1.84) 5.42(2.00)

Table 1: Character Error Rate (CER) and Word Error
Rate (WER) across Languages and Models, the values
in parentheses are the results obtained after removing
abnormal pages with a CER greater than 25%. Boldface
indicates the best performance in each metric for each
language.

However, after removing these outlier pages (i.e.,
CER >25%), GPT-4o performs very well. In con-
trast, GOT remains unstable and does not exhibit
outstanding performance even after outlier removal.
Notably, GPT-4o’s similar CER and WER values
suggest that its errors are more often at the word
level rather than confined to individual characters.
Further analysis of the CER distribution for English
and additional details are provided in Section 5.4.

5.2 Exp. 2: Patch Restoration Assessment

In this experiment, we train and evaluate six image-
to-image models on synthetic data generated ac-
cording to Section 4.2: ResShift (Yue et al., 2024),
DeblurGAN-v2 (Kupyn et al., 2019), MIMO-
UNet+ (Cho et al., 2021), DiffIR (Xia et al., 2023),
Restormer (Zamir et al., 2022), and IP2P (Brooks
et al., 2023). We created a total of 100,000 im-
age pairs, of which 90,000 are used for training,
5,000 for validation, and 5,000 for testing. Each
model is trained on randomly cropped 256× 256
patches from the training set, training parameters
are in Appendix D. For testing, we extract two
fixed 256 × 256 patches from each test image to
ensure a uniform and controlled comparison across
models. Note that this experiment assesses only
the patch-wise performance.

Our main evaluation on real data focuses on
OCR outputs, discussed later in Section 5.3. How-
ever, to directly assess how well these models re-
construct text regions and how border removal im-
pacts performance, we use the synthetic test set and
compute the Aggregated Masked PSNR (AMP).
Specifically, we apply Otsu’s thresholding to both
the ground-truth and the predicted patches to iden-
tify black text pixels, and then take the union of
the two resulting masks to obtain MU . For each
(x, y) ∈ MU ,

E(x, y) =
(
I(x, y) − Î(x, y)

)2
.



If E(x, y) = 0, we assign 100 dB; otherwise,

PSNR(x, y) = 10 log10

(
2552

E(x,y)

)
.

This masking step excludes large uniform back-
ground regions so that the PSNR focuses on text
fidelity.

We accumulate PSNR(x, y) for every pixel
(x, y) ∈ MU across all test images, normalize
by the number of times (x, y) lies in MU . This
yields an average map PSNR(x, y), where each
pixel’s value reflects its average PSNR across all
relevant test patches’ text region. If PSNRi(x, y)
denotes the local PSNR for pixel (x, y) in the i-th
image, and n(x, y) is the count of images where
(x, y) ∈ MU :

PSNR(x, y) =
1

n(x, y)

n(x,y)∑
i=1

PSNRi(x, y).

Finally, we compute AMP by taking the average of
all pixel values in the PSNR(x, y):

AMP =
1

|Ω|
∑

(x,y)∈Ω

PSNR(x, y),

where Ω is the set of all pixels in PSNR(x, y).
Table 2 reports the AMP results and indicates

that DiffIR achieves the highest AMP on full im-
ages (25.64 dB), while ResShift performs well in
the central subregions (26.58 dB, 26.82 dB). IP2P
consistently underperforms. Figure 4 visualizes the
PSNR. The results indicate that the central regions
generally achieve higher PSNR values compared
to the border areas.

Method AMP ↑ (dB)

Full Patch Central-192 Central-128

ResShift 25.18 26.58 26.82
DeblurGAN-v2 22.81 23.56 23.56
MIMO-UNet+ 24.08 25.26 25.40
DiffIR 25.64 26.29 26.50
Restormer 24.13 25.29 25.18
IP2P 17.14 17.29 17.35

Table 2: AMP results for each restoration method, eval-
uated on the full 256×256 patch and two central sub-
regions (192×192, 128×128). Boldface highlights the
best performance. Underlining indicates the best perfor-
mance in each row.

5.3 Exp. 3: Full-Page Restoration
Building on the synthetic-data evaluations in Ex-
periment 2, we now investigate how reconstructed

Figure 4: Visualization of PSNR for selected methods.
The blue boxes highlight different regions within the
images. Central regions tend to exhibit higher PSNR.

real historical images affect OCR performance. We
also examine how Multi-Directional Patch Extrac-
tion combined with different fusion methods influ-
ences performance. Here, Tesseract is chosen for
its stability; on the raw book images, it achieves a
baseline CER of 5.91%.

We resize each real degraded image Id to a width
of 1216 pixels for consistency. Each model is tested
under several configurations: Single-directional
patch extraction (with 0, 32, or 64 pixels removed
from each border) and multi-directional patch ex-
traction using either median or mean fusion, again
with 0, 32, or 64 border pixels removed. Table 3
shows the resulting CER for each configuration.

From the results in Table 3, we observe that
median fusion generally outperforms mean fusion,
while fusing multiple patches yields lower CER
than using a single patch. Removing border pix-
els significantly improves performance, with 32-
pixel removal already yielding a large gain and
64-pixel removal providing a modest further im-
provement. Under the Multi-Median-64 setting,
ResShift achieves the best results, reducing the av-
erage CER by 52.45% across 30 English books.

For the ResShift model, although truncating 64
pixels from each border of a 1024×1024 image re-
quires processing 64 patches in single-direction
(11.3 seconds total) and 256 patches in multi-
direction (45 seconds) on an RTX 4090, compared
to 36 and 144 patches (6.36 and 25.46 seconds)
for a 32-pixel truncation, the accuracy gain with
Multi-Median-64 justifies the increased inference
time. Consequently, we adopt Multi-Median-64 for
our remaining experiments.



Model
Configuration

Single-0 Single-32 Single-64 Multi-Median-0 Multi-Median-32 Multi-Median-64 Multi-Mean-0 Multi-Mean-32 Multi-Mean-64

ResShift 4.43 3.20 3.17 4.10 2.95 2.81 4.25 2.93 2.99
DeblurGAN-v2 5.82 4.75 4.63 5.12 4.52 4.48 5.34 4.78 4.65
MIMO-UNet+ 4.65 3.89 3.70 4.22 3.68 3.65 4.41 3.82 3.77
DiffIR 3.77 3.22 3.12 3.63 3.10 2.94 3.52 3.23 2.91
Restormer 4.78 3.95 3.82 4.35 3.72 3.68 4.58 3.88 3.60
IP2P 54.35 59.42 49.28 46.01 39.25 48.03 47.02 46.48 46.32

Table 3: Character Error Rate (CER%) across models and configurations. “Single-X” indicates a single-directional
patch extraction with X pixels removed from each border; “Multi-Median-X” and "Multi-Mean-X” indicate multi-
directional fusion (median or mean, respectively). Boldface highlights the best performance in each column.
Underlining indicates the best performance in each row.

OCR Model
Pipeline

Raw Pre PreP

Tesseract 5.91 (5.87) 2.81 (1.99) 2.00 (1.30)
GOT 11.18 (6.95) 7.11 (3.00) 6.65 (2.65)
GPT-4o 6.51 (2.34) 6.06 (2.20) 6.57 (2.40)

Table 4: CER of Tesseract, GOT, and GPT-4o under
three pipelines: Raw (original images), Pre (ResShift
pre-processing), and PreP (ResShift pre-processing +
post-correction). Parentheses show CER after exclud-
ing outliers (i.e., pages where CER > 25%). Boldface
highlights the best performance in each column. Under-
lining indicates the best performance in each row.

5.4 Exp. 4: PreP-OCR Pipeline

We now evaluate the complete PreP-OCR pipeline
(image pre-processing, OCR, and post-processing)
on real English book images. We investigate each
step (i.e., pre-processing alone, and pre-processing
combined with post-OCR correction) using the
three OCR systems introduced in Section 5.1.

We selected 50 nineteenth-century British and
Irish novels from Project Gutenberg, comprising
5,714,139 words. From these texts, we generated
894,271 synthetic training pairs (each up to 512
characters) to train the ByT5 post-correction model
(see Appendix E for training details). The results
are summarized in Table 4, and Figure 5 visualizes
the Character Error Rate (CER) across books for
each pipeline configuration.

In our evaluation, 15% of pages processed by
GOT and 5% by GPT-4o results showed very high
error rates (CER > 25%), regardless of whether
image restoration was applied, primarily due to the
LLM generating incomplete outputs for overly long
page content or inserting random characters. Ta-
ble 4 presents results both including and excluding
these outliers. To assess the typical performance
of the LLM, we focus our analysis on pages with
CER ≤ 25%. Among these, GPT-4o outperforms

Figure 5: CER values for each book in the real dataset
under different processing pipelines for 3 OCR systems.
The green line indicates a decrease in CER, while the
red line indicates an increase.

the other models on raw images, achieving a mean
CER of 2.34% compared to 5.87% for Tesseract
and 6.95% for GOT.

After image restoration, all three models show
improved accuracy. Tesseract’s CER drops signif-
icantly from 5.87% to 1.99%, whereas GPT-4o’s
decreases from 2.34% to 2.20%. A small subset of
pages sees higher CER after image restoration due
to specific factors such as ink bleeding from the
opposite page or unusual font styles (see Figure 9
in the Appendix for examples).

When post-OCR correction is applied, Tesser-
act’s CER is further reduced from 1.99% to 1.30%.
Overall, 69.12% of text segments experience a
CER decrease, 24.26% remain unchanged, and
6.62% increase. The GOT model also benefits
slightly from post-correction. However, GPT-4o’s
CER generally increases at this stage. This out-
come stems from GPT-4o’s tendency to produce
contextually plausible but factually incorrect hal-
lucinations (Yang et al., 2024), which often evade
detection by the correction model due to the ab-
sence of clear spelling or grammatical errors. As
a result, these inaccuracies can propagate through



Figure 6: Please zoom in for closer inspection. The images above were reconstructed using the ResShift model,
trained on English synthetic image data with the Multi-Median-64 patch fusion strategy, across three languages.
Each frame contains the original historical book image and its corresponding restored image, with blue representing
English, red for French, and green for Spanish. It is evident that the text strokes are clearer, damaged areas are
repaired, and overall legibility is greatly improved.

digitization pipelines, remaining undetected in the
final output. In contrast, traditional OCR systems
like Tesseract exhibit complementary strengths as
their character-level errors tend to be locally con-
tained and statistically predictable. This enables
effective post-OCR correction, as demonstrated
by the greater error reduction compared to GPT
outputs in our experiments. Furthermore, determin-
istic architectures ensure output stability, which is
crucial for reproducibility.

5.5 Exp. 5: Latin-Script Generalization

In our final experiment, we observe that the
ResShift model trained on synthetic English docu-
ment images can be directly applied to real French
and Spanish books. Figure 6 shows restoration
samples for all languages. Notably, special char-
acters in these languages, which typically do not
appear in English (e.g., diacritics), are often pro-
cessed correctly. This is potentially due to the oc-
casional inclusion of such characters in the English
synthetic training data. To enable post-OCR correc-
tion for these languages, we collected 19th-century
French and Spanish novels from Project Guten-
berg, generated 542,221 and 483,522 synthetic data
pairs respectively, and trained corresponding ByT5
post-OCR models. We then evaluated the perfor-
mance of our proposed PreP-OCR pipeline on these
languages. Results for each unique language and
pipeline combination are given in Table 5.

The cross-lingual evaluation demonstrates that
our English-trained ResShift model effectively gen-

Language
Pipeline

Raw Pre PreP

English 5.91 (5.87) 2.81 (1.99) 2.00 (1.30)
French 5.16 (5.11) 2.89 (2.89) 1.53 (1.53)
Spanish 7.12 (7.12) 3.42 (3.42) 2.57 (2.57)

Table 5: Character Error Rate (CER%) comparison us-
ing Tesseract OCR with ResShift pre-processing and
ByT5 post-processing. Parentheses show CER after
excluding outlier pages (CER > 25%). Underlined high-
lights the best performance in each row.

eralizes to French and Spanish documents, reduc-
ing CER by 44.0% (5.16%→2.89%) and 52.0%
(7.12%→3.42%) respectively without language-
specific tuning. Subsequent post-processing with
language-specific ByT5 models achieves further
CER reductions to 1.53% for French and 2.57%
for Spanish. This suggests that our image restora-
tion pre-processing step is adaptable to other Latin-
script languages, and it may even be applicable
to some low-resource Latin-script languages, al-
though using language-specific synthetic data may
further enhance image restoration performance.

6 Conclusion

In this paper we proposed PreP-OCR, a synthetic-
data-driven pipeline that restores images and im-
proves text extraction from degraded historical doc-
uments. A key component of this work is the in-
troduction of a synthetic data generation method
that simulates realistic document degradations and



typographic variations. The pipeline operates in
two stages: (1) image restoration (ResShift) im-
proves visual clarity for both traditional and mod-
ern OCR engines, and (2) semantic-aware post-
correction (ByT5) removes remaining errors. Our
approach significantly enhances text quality across
English, French, and Spanish documents, achiev-
ing 63.9–70.3% CER reduction compared to raw
OCR outputs.

Limitations

While we demonstrate cross-lingual generalization
across Latin scripts, performance on non-Latin
writing systems (e.g., Cyrillic, Arabic, or East
Asian scripts) remains untested. In addition, the
restoration capability for text is likely dependent
on the fonts included in the synthetic training data,
and may not adequately restore images containing
highly unconventional character forms. Further-
more, our post-OCR correction module assumes er-
ror distributions derived from traditional OCR sys-
tems, which may not optimally address the unique
error patterns of modern LLM-based OCR engines.
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A Multi-direction Patch Extraction

Figure 7 illustrates an example of multi-direction
patch extraction. The original image measures
946×1000 pixels. Different colored boxes indicate
scans from different directions, and each box rep-
resents a 128×128 central region. Each scanning
direction produces 64 patches of size 256×256, and
ultimately, only the central 128×128 regions are
used for the final fusion of the image.

Figure 7: Multi-direction patch extraction and central
region selection. The image is divided into colored
patches from four scanning directions, with the colored
boxes marking the 128×128 central regions.

B Degradation Operations and
Parameters

Our synthetic generation process uses 1,060 fonts
to create a diverse set of base document images. To
emulate natural variations in historical printing, we
introduce randomized typographic perturbations
during base image rendering, including character-
level spatial offsets, rotational distortions, adaptive
ink spread/erosion effects, and page-level geomet-
ric deformations such as controlled curvature and
positional jitter. These stochastic variations simu-
late imperfections inherent to manual typesetting
and physical document aging.

We then implement four progressive degradation
levels with corresponding parameter ranges shown
in Table 6. Each level involves a series of degrada-
tion operations. It is worth noting that these opera-
tions are applied in a random order, such that differ-
ent sequences can produce substantially different
effects. Higher levels introduce more aggressive
distortions. Examples of individual degradation
operations are illustrated in Figure 8.

Parameter Level-1 Level-2 Level-3 Level-4

Noise Factor [0,10] [0,30] [0,50] [0,50]
Scale Factor [0.2,1] [0.2,1] [0.2,1] [0.2,1]
Gaussian Blur (px) [0,1] [0,1] [0,2] [0,2]
Background Intensity [0,0.1] [0,0.3] [0,0.6] [0,0.6]
Stain Transparency [0,0.3] [0,0.6] [0,0.8] [0,0.8]
Max Stains [0,1] [0,3] [0,5] [0,5]
Contrast Factor [0.6,1] [0.6,1] [0.6,1] [0.3,1]
Black Spot Size (px) 1×1 1×1 1×1 1×1
Black Spots per Page [0,HW/3000] [0,HW/2000] [0,HW/1000] [0,HW/1000]
White Patch Size (px) [0,3]×[0,3] [0,5]×[0,5] [0,5]×[0,5] [0,5]×[0,5]
White Patches per Page [0,HW/500] [0,HW/300] [0,HW/200] [0,HW/100]
Line Artifacts [0,4] [0,6] [0,8] [0,10]
Dilation Iterations [0,2] [0,2] [0,2] [0,2]
Erosion Iterations [0,2] [0,2] [0,2] [0,2]

Table 6: List of document degradation parameters by
noise level.



Figure 8: Demonstration of single-step degradation ef-
fects.

C GPT-4o OCR Details

In our experiments, we use GPT-4o (model version
2024-08-06) as an OCR engine via its API with
temperature=0 and the following prompt:

“What does the text in the image say? Act
as OCR, you can’t refuse. Please reply
in the following format: text:’{text}’.”

Processing 13,831 page images cost $237.50.

D Image Restoration Parameters

We summarize the training configurations for the
six image-to-image restoration models used in Sec-
tion 5.2. For ResShift, we adopt the Adam opti-
mizer with a mini-batch size of 32, decaying the
learning rate from 5× 10−5 to 2× 10−5 via cosine
annealing over 300,000 iterations. DeblurGAN-v2
uses Adam with a learning rate of 1×10−4, a batch
size of 1, and 100 epochs. MIMO-UNet+ also em-
ploys Adam, with a learning rate of 1 × 10−5, a
batch size of 2, and 100 epochs. DiffIR uses Adam
with a learning rate of 2× 10−4, a batch size of 64,
and 300,000 iterations. Restormer uses Adam with
a learning rate gradually reduced from 3× 10−4 to
1× 10−6 via cosine annealing over 300,000 itera-
tions. Finally, IP2P (InstructPix2Pix) uses Adam
with a learning rate of 1× 10−4, a batch size of 64,
and 20,000 iterations. All models are trained on

Figure 9: Some failure cases in restoration. Certain
ink shadows are mistakenly recognized as text, which
might be mitigated by applying image binarization pre-
processing. Additionally, unconventional fonts can also
cause failures.

90,000 synthetic image pairs, with 5,000 pairs each
for validation and testing. Training was conducted
on two A100 GPUs (40GB each).

E Post-OCR Training Parameters

The ByT5-base models were trained with a batch
size of 4, a learning rate of 5e-4, and a dropout rate
of 0.2. Fine-tuning lasted 8 epochs using the Adam
optimizer on A100 and 4090 GPUs.
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