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Abstract. The adoption of Optical Character Recognition (OCR)
tools has been central to the increased digitization of historical doc-
uments. However, the errors introduced during OCR, particularly
in texts with a specialized vocabulary (SV), necessitate effective
post-OCR correction methodologies. This study introduces a novel
approach that leverages weak supervision and self-supervised fine-
tuning to enhance post-OCR correction without the need for substan-
tial manual annotations. By using multi-noise-level synthetic data,
generated through automatically-extracted OCR errors and applied
to clean texts, we can train robust models tailored for post-OCR
tasks. Furthermore, we propose a unique self-supervised fine-tuning
strategy, applied specifically to long texts, enables models to adeptly
handle out-of-vocabulary problems and SV. Additionally, we tested
the performance of the GPT model on post-OCR tasks.

1 Introduction

Advancements in OCR have significantly transformed the preservation
and analysis of historical printed and handwritten materials, making
them more accessible for research and archival purposes. While OCR
systems have made it easier to digitize collections of culturally im-
portant texts, they also present challenges, especially when working
with documents that have complex layouts or damaged pages. Post-
OCR processing aims to address these issues by correcting errors
and enhancing the usability of digitized texts. However, traditional
manual post-OCR correction methods, despite their acknowledged
benefits, are often labor-intensive and costly. Consequently, a variety
of automated techniques have been proposed for this task [29].

Recent studies have redefined post-OCR correction as a Seq2Seq
Neural Machine Translation (NMT) challenge [1, 26, 27, 15]. Such
models have been shown to effective in correcting OCR-produced
texts. However, the reliability and generalization of NMT-based mod-
els largely depend on the quality and quantity of the training data
[43]. Unfortunately, obtaining large, diverse training datasets is often
expensive or unfeasible [32]. The situation is made more complex
by the nuances of specific post-OCR processing techniques. In ad-
dition to errors coming from the original digitization process, many
post-OCR procedures can, counter-intuitively, introduce further er-
rors by altering previously-accurate terms. This becomes especially
problematic when dealing with important Out-of-Vocabulary (OOV)
domain-specific terms and unique entity names, which we refer to
as a Specialized Vocabulary (SV). Such errors not only reduce the
texts’ usefulness for close reading by humanities scholars, but also
can impact upon subsequent analyses [42].

In response to the challenges above, in Section 3 we describe a pro-
cess that employs weak supervision to create rich synthetic datasets
to facilitate the training of robust post-OCR correction models. We
also propose a Self-Supervised Fine-Tuning (SSFT) method, which
improves the model’s ability to manage specialized vocabulary and
historical linguistic nuances. This not only yields more accurate OCR
corrections, but also preserves the integrity of the original text, which
is essential for cultural analytics researchers. The results presented
later in Section 5 show that our proposed techniques are effective
across multiple different benchmarks, including those involving fic-
tional texts and historical newspapers. We also conduct experimental
comparisons with GPT models, which have demonstrated impressive
capabilities across various NLP tasks. Our data generation process, in
conjunction with SSFT, provides a scalable and efficient strategy for
post-OCR correction, making digitized documents more accessible
and useful for downstream tasks.

2 Related Work
A variety of methods have been proposed in the literature for post-
OCR text correction [29]. Some studies leverage multiple OCR en-
gines and combine their outputs to yield improved results [22, 24].
Recent advances involve using pre-trained models and Seq2Seq ar-
chitectures for correction purposes [1, 28]. Schaefer and Neudecker
[38] introduced a two-step post-OCR method using an LSTM-based
neural network to first detect errors and then correct them. An unsu-
pervised approach combining multiple OCR views via pre-trained
language models is proposed by Gupta et al. [14]. Ramirez-Orta et al.
[35] split each input document into character n-grams and combine
their individual corrections into the final output. Recent works have
employed Transformer-based encoder-decoder models [23, 34, 40].

Synthetic data is widely used in post-OCR correction tasks [30]
and it is typically generated using two methods: Noise Injection [17]
and Back Translation [39]. In most cases, synthetic data with only a
single noise ratio is considered when training a model. Koo et al. [20]
investigated the impact of noise insertion ratio on model performance
in GEC tasks. Jasonarson et al. [18] and Rijhwani et al. [37] first
detected the frequency of OCR errors in a corpus and then injected
errors into clean text based on the observed frequencies. D’hondt et al.
[11] proposed generating multiple datasets with different noise ratios.
In another study, Guan and Greene [13] incorporated various noise
ratios into their synthetic datasets, compared different methods for
generating synthetic data, and introduced a glyph-similarity-based
approach that proved effective in low-resource languages. They ob-
served that for resource-rich languages like English, extracting error



distributions from existing datasets and using this information to
inform the synthetic data creation process is highly effective.

Synthetic data generation is important for augmenting limited train-
ing datasets in post-OCR tasks. Weak supervision and self-supervised
learning methods also serve as effective alternatives when labeled data
is scarce [48]. Weak supervision involves training models with noisy
or imprecise labels, as demonstrated in Whisper’s speech recognition
system [33] and MULTIR’s relation extraction approach [16]. In clini-
cal text classification, its effectiveness was shown by Wang et al. [44].
Self-supervised learning, in contrast, leverages unlabeled data by cre-
ating pseudo-tasks that direct the learning process, with models like
BERT [9] and GPT [3] serving as prime examples. Both techniques
take advantage of the available data, making them complementary to
synthetic data generation approaches.

3 Methods
3.1 Data Generation

Our proposed process for generating synthetic data, the OCR Error
Maker (OCREM), involves two fundamental steps: (i) extracting
OCR errors from existing data; (ii) using this information to insert
new errors into clean text from our domain of interest to generate a
substantial volume of new synthetic data, without the need for manual
annotation. We will now detail the process for constructing these
synthetic datasets. This involves using two sets of documents:

1. Source data: This existing dataset acts as a source of common
OCR errors. It consists of pairs containing both the original noisy
OCR-produced text and the corresponding corrected ground truth
(GT) version. From this, we can extract OCR errors to construct
the rules for our proposed OCREM system.

2. Target data: A domain-specific collection of error-free texts. We
apply OCREM to insert OCR errors, extracted from the source
data, into this target data, thereby generating the training data.

In this paper, we make use of the English datasets from ICDAR2017
& 2019 [36] as our source data, totaling 6.2 million characters. These
datasets contain OCR outputs paired with ground truth texts, enabling
us to investigate the original characters in the OCR errors. Figure 1
shows an example of the format of the source data, where the “@"
character is used as padding symbol in the aligned sequences.

During initial experiments, we observed that the annotations in the
ICDAR datasets are not always reliable. Notably, many misalignments
are present in certain texts. Since we could view such annotations as
a form of “imperfect” or “imprecise” labels, we propose adopting a
weakly supervised learning approach [48]. By strategically making
use of OCR errors from these noisy, misaligned datasets, we can
leverage the inherent errors and noise to enhance a post-OCR correc-
tion model’s ability to generalize across different OCR errors. This
approach increases the diversity of OCR errors in the synthetic data,
thereby improving the resulting model’s robustness. As part of our

Figure 1: An example of source data, where the [OCR_toInput]
lines represent the text produced via OCR, while [ GS_aligned] and
[OCR_aligned] represent the GT and the OCR text that have been
aligned with each other, respectively.

experiments later in Section 5.2, we also consider the case of not using
weak supervision (i.e., filtering out “imprecise” cases from the source
data). Next, we describe the two phases of the OCREM process.

Phase 1 – OCREM construction: We use the labeled pairs in the
source data to calculate the probabilities of individual characters
being altered during OCR processing. This includes determining the
likelihood of all characters, such as spaces and punctuation, being
replaced. Each value Pij represents the probability that character i
is substituted with string j based on the source data. It is important
to note that i and j can be identical, indicating that a character is
correctly recognized and remains unchanged after OCR processing.
These probabilities serve as the “rules" for introducing OCR-like
errors into the target data. By using the padding symbol “@" found in
the source data, we can identify which characters have been deleted
or recognized as multiple characters (strings). We apply substitutions
and then remove padding symbols to generate synthetic text. By using
this process, we can simulate a range of typical OCR errors as follows:

Recognition errors: Certain characters can be substituted by others,
simulating the case where OCR confuses one character for another.

Insertion errors: In our target data, some characters can be replaced
with lengthy strings, simulating insertion errors.

Deletion errors: Characters in the target data can be replaced by the
padding symbol “@". In this case that symbol will eventually be
removed, simulating deletion errors.

Segmentation errors: Since spaces are considered to be characters,
they can also be replaced by the padding symbol “@", which
will eventually be removed, leading to tokenization errors in word
segmentation.

Phase 2 – OCREM application: After extracting the rules in Phase
1, we use these to introduce OCR errors into the target data. Figure
2 shows the full process. In the target data, some random words can
be replaced with the “<unk>" token (primarily for Experiment 2,
see Section 5.2). The “<unk>" token will not be affected by error
insertions. Due to the complexity and diversity of OCR errors, the
quality of OCR-produced texts can vary considerably, even within the
same dataset.

To train a robust correction model capable of handling texts with
varying noise levels, we can generate the target data multiple times,
each with a different degree of OCR errors. To facilitate this, we
introduce the concept of an Error Level (EL), denoted as e, which
controls the degree of noise in the output data. We use the probability
Pij calculated in Phase 1 to calculate a weight Wij for character i
being replaced by string j. This weight Wij governs the likelihood of
different character replacements occurring during the generation of
synthetic data, such that

Wij(e) =


Pij

Pii+e·
∑

k∈Vi,k ̸=i Pik
, if i = j

Pij ·e
Pii+e·

∑
k∈Vi,k ̸=i Pik

, if i ̸= j
(1)

where Vi is a set of potential strings that could replace character i. As
the error level e increases, the weight Wii for a character remaining
unchanged decreases, while the weights for it being substituted by
other strings rise, thereby increasing the likelihood of errors occurring.

For the experiments described later in Section 4, we use OCREM
to generate 7 variations of the synthetic data, using increasing error
levels e ∈ [0.3, 20.0]. Table 1 shows the details of the error rates
present in data generated with different error levels. The model will
be trained using a merged set of these 7 datasets, allowing it to learn
how to handle OCR-produced texts with varying degrees of errors.



Figure 2: Synthetic data generation workflow. The more intense the red hue, the higher the degree of error.

Table 1: CER and WER values for data with increasing error levels e.
e CER WER

0.3 1.17% 7.00%
1.0 2.55% 13.92%
3.0 5.72% 27.13%
5.0 8.32% 36.09%

10.0 13.24% 52.18%
15.0 18.11% 64.78%
20.0 22.29% 71.22%

We now discuss our proposed Self-Supervised Fine-Tuning (SSFT)
method. The motivation for this process stems from the presence of
numerous correct or partially correct sentences and words in longer
documents, such as books from historical fiction collections [21]. We
use a pre-trained Seq2Seq model, such as mBART, ByT5, or Flan-
T5, to perform an initial round of fine-tuning with a large dataset of
post-OCR book training data. This process transforms the model into
a specialized post-OCR correction model. We use training parameters
of 8 epochs, a learning rate of 5e-4, gradient accumulation over 16
steps, a batch size of 4 per device, and a dropout rate of 0.2.

Subsequently, focusing on the content of the books, especially the
SV terms, the model undergoes a second round of fine-tuning. Specif-
ically, the model uses sentences it has corrected itself to generate
synthetic data for this iteration of fine-tuning. In this way, the model
can learn and adapt to the specific language features of a given text,
thus more accurately handling challenging SV terms.

The full workflow for this process is shown in Figure 3. We now
explain each of the 7 steps:

Step 1: To proceed with further fine-tuning, we first need clean SVs
and their surrounding contexts, which may include OCR errors. At
this stage, we introduce the Word-Based Text Extractor component.
Initially, this component uses the BookNLP suite [2] to extract all
words labeled as PROP (proper noun) from the complete text of a
specific book B. We then filter out words that occur with a frequency
below (text length of B)/200000. This frequency threshold, derived
from empirical observations, effectively eliminates words likely to
contain OCR errors. Finally, for each SV, we extract 80-word context
chunks. Given our model’s maximum sequence length of 512, these
80-word chunks comfortably fit within this limit.
Step 2: The Text Extractor component produces multiple text chunks,
each composed of one or more clean SV terms and the surrounding
text (with OCR errors). The Word Masker component converts these
SVs into “<unk>". Note that, while other forms of masking can be
used here, we use the special token “<unk>" from the ByT5 model.
Step 3: We use the model, fine-tuned or trained in the first round, to
repair these chunks. The main goal is to repair the text around the SV,
as the model has learned not to change the “<unk>" token during the
first round of fine-tuning, so it is retained.
Step 4: The Restorer component restores the “<unk>" token back

to the original SV, resulting in clean sentences that will be used as
ground truth for the second round of fine-tuning.
Step 5: We use the clean text obtained in Step 4 to generate synthetic
text variants with different noise levels.
Step 6: Using the synthetic data generated from book B in the previ-
ous step, we conduct a second round of fine-tuning on the model that
was previously fine-tuned in the initial round.
Step 7: We use the fine-tuned model from Step 6 to carry out full-text
correction on book B to produce the final output.

3.2 Self-Supervised Fine-Tuning

3.3 Models

We now describe the models which are relevant to our experiments.

3.3.1 mBARTlarge

mBART [41], built on the Transformer architecture, is a sequence-to-
sequence model that excels in generative tasks. This effectiveness is
largely due to its pre-training phase, which involves both masking and
regenerating the correct text from shuffled original text. The model
leverages BART’s structure and uses the SentencePiece tokenizer to
split text into subword units.

3.3.2 Flan-T5base

Flan-T5 [7], an advanced variant of the T5 model, improves on its
predecessor by fine-tuning a language model across various tasks
to improve its generalization capabilities. By using a sequence-to-
sequence Transformer design, it frames all NLP applications, includ-
ing classification and translation, as text generation tasks. During
pre-training, Flan-T5 adopts a masked language model similar to
BERT but implements masking at the sequence level – a technique
known as “span corruption" – to achieve state-of-the-art performance
in various benchmarks, including NMT tasks. The SentencePiece
tokenizer is also applied with this model.

3.3.3 ByT5base

ByT5 [46], a byte-to-byte variant of the T5 model, is designed for
efficient processing of multilingual and non-Latin character sets. Its
pre-training exclusively relies on the mC4 corpus, with an average
span-mask of 20 UTF-8 characters without using supervised training.
Unlike typical subword level masking used in many models, ByT5
applies byte-level masking, where spans of bytes are masked and the
model is trained to predict the original bytes. Although ByT5 models
are typically larger and require more computational resources than
their T5 counterparts, they generally perform well on noisy input text.



Figure 3: The process begins with the extraction of significant vocabulary (SV) and their surrounding contexts, which are then masked and
partially repaired. This refined data is subsequently used for a second round of fine-tuning. In detail, SVs and their contexts are first identified
and extracted (Step 1), followed by masking the SVs (Step 2). The model, already fine-tuned, is then applied to repair the surrounding context
(Step 3). After that, the original SVs are restored (Step 4), and the corrected text is used to generate synthetic data (Step 5). This synthetic data
facilitates a second phase of fine-tuning (Step 6), which is then applied for the final correction of the full text (Step 7).

3.3.4 GPT-3.5/4

GPT-3.5 and GPT-4 [4], widely-adopted models from OpenAI, lever-
age the Transformer’s decoder and Byte-Pair Encoding tokenizer,
resulting in strong capabilities in text generation. By employing rein-
forcement learning with human feedback [6] to fine-tune their perfor-
mance, these models, particularly GPT-4, have become prominent in
the NLP community, proving to be effective for a range of different
tasks beyond their primary conversational functionality.

3.3.5 Baseline

We use two models from related work to provide a baseline. Schae-
fer and Neudecker [38] described a two-step OCR post-correction
process, where a detection model identifies errors and a separate
LSTM-based correction model fixes them, referred to as the Two-Step
model. Meanwhile, Ramirez-Orta et al. [35] proposed breaking down
documents into character n-grams, correcting each segment individ-
ually, and then reassembling them. Corrections are then integrated
using a voting system among multiple sequence models, referred to
as LECS.

4 Experimental Setup
4.1 Datasets

In our first experiment, we consider three benchmark English language
scanned datasets from the literature: TCP [10], Overproof-2, and
Overproof-3 [12].

For our second experiment, we use 100 English books from the
RETAS datasets provided by Yalniz and Manmatha [47] as our test set.
Additionally, we select 50 books from the 19th century, sourced from
Project Gutenberg and the Internet Archive. From these, we generate
synthetic training and validation sets using the method described in
Section 3.1 – we refer to this dataset as 50-MultiW. This synthetic
data has a maximum character length of 512 and consists of 894,271

data pairs in total. To compare the impact of weak supervision and
multiple noise levels in the training set, we also generated three addi-
tional datasets: 50-Multi, 50-Single, and 50-SingleW. Here“Single"
indicates datasets generated using only error level 5.0, “W" indicates
the use of weak supervision, and the absence of “W" indicates that
weak supervision was not used (i.e., “imprecise” information from the
source data was filtered out). Since constructing multiple noise data
requires replicating the data seven times before generating synthetic
data, we duplicated the “Single" dataset seven times in its entirety
to match the volume of data in the “Multi" datasets for controlled
variable conditions.

For the third experiment, we use 14 books from RETAS as test data.
Details for all datasets are given in Table 2.

Table 2: Summary of datasets used in our experiments.
Dataset Type Size Time Period CER WER
Overproof-2 Newspaper 49,000 words 1842–1954 8.5% 25.7%
Overproof-3 Newspaper 18,000 words 1871–1921 10.9% 27.6%
TCP Book 934 books 1500–1800 10.6% 30.5%
RETAS Book 100 books 1800-1900 6.6% 20.8%
50-MultiW Book 50 Books 1800-1900 9.5% 37.3%
50-Multi Book 50 Books 1800-1900 9.2% 35.2%
50-SingleW Book 50 Books 1800-1900 8.3% 36.1%
50-Single Book 50 Books 1800-1900 8.2% 35.8%

4.2 Evaluation Metrics

In our experiments we consider a number of evaluation criteria, which
we briefly describe below. For the first two metrics, we use implemen-
tations provided by TorchMetrics [8].

Character Error Rate (CER) assesses the character-level discrepan-
cies between the OCR output and the GT in the dataset.

Word Error Rate (WER) measures the word-level discrepancies
between the OCR output and the GT.



Correct Word Retention Rate (CWRR) is a measure defined as

CWRR =
CC

CC + CI

where CC and CI respectively represent the number of SV terms
correctly recognized in the OCR output but correctly retained and
incorrectly altered after OCR correction.

Incorrect Word Correction Rate (IWCR) is a measure analogous
to the above and defined as

IWCR =
IC

II + IC

where IC and II respectively represent the number of SV terms incor-
rectly recognized in OCR output but correctly and incorrectly altered
post OCR correction:

Unseen Word Rate (UWR) is defined as the proportion of words in
post-OCR text that do not appear in the ground truth - i.e., UWR =
M/N where N is the total number of words in the post-OCR text,
while M represents the number of words that do not appear in the
ground truth.

Character Error Rate Reduction (CERR) represents the percent-
age improvement in character accuracy achieved by the post-OCR
correction process, compared to the original OCR output:

CERR = 1− CER(Post-OCR,GT)
CER(OCR,GT)

4.3 Experiment 1: Using Synthetic Data

Objective: The primary goal of this experiment is to evaluate and
compare the performance of models trained or fine-tuned on pure
synthetic data, which is generated using only the ground truth from
existing datasets, against models trained on human-annotated data,
as reported in the original studies. Additionally, we compare their
performance with that of the popular Hunspell spell checker [31].
Datasets: TCP, Overproof-2, and Overproof-3. Only the ground truth
parts of these datasets are used as target data for generating synthetic
data, without employing their OCR text. For TCP, the data was split
using the original author’s script. For Overproof-2 and Overproof-3,
we conducted 5-fold cross-validation. During this process, 20% of the
data was reserved as the test set. The remaining data is split into a
training set and a validation set in a 9:1 ratio.
Evaluation metrics: CER, WER.
Models: LECS, Two-Step, Hunspell, mBART, ByT5, Flan-T5. For
the LECS model, we used a 2-layer structure, with an embedding
dimension of 256, a feedforward dimension of 1024, a dropout rate
of 0.2, a batch size of 200, a learning rate of 1e-4, and carried out
training over 10 epochs. The model had a window size of 20, used
beam search for decoding, and applied uniform weighting. For the
Two-Step model, the Detector Model featured a 3-layer structure with
a hidden size of 512 and underwent 138 training epochs, with a batch
size of 200, a dropout rate of 0.2, and a learning rate of 1e-4. The
Correction Model was trained for 800 epochs, employing the teacher
forcing technique at a ratio of 0.5, with a batch size of 200, a dropout
rate of 0.2, and a learning rate of 1e-4. For the mBART, ByT5, and
Flan-T5 models, the training parameters included 8 epochs, a learning
rate of 5e-4, gradient accumulation every 16 steps, a batch size of
4 per device, and a dropout rate of 0.2. The model with the lowest
development loss was chosen.

4.4 Experiment 2: Evaluation of SSFT

Objective: Next we conduct an ablation study to investigate the ef-
fects of weak supervision, multi-noise level training, and SSFT.
Datasets: The model was fine-tuned separately on the 50-MultiW, 50-
Multi, 50-SingleW, and 50-Single datasets. Each dataset was divided
into training and validation sets in a 9:1 ratio. Testing is performed on
100 English books from the RETAS dataset.
Evaluation metrics: WER, CER, CWRR, IWCR, UWR.
Models: ByT5. We used the ByT5-base model with the default struc-
ture from Hugging Face. In the first round of fine-tuning, we used
training parameters of 8 epochs, a learning rate of 5e-4, gradient ac-
cumulation every 16 steps, a batch size of 4 per device, and a dropout
rate of 0.2. For SSFT, the training parameters were set to 16 epochs, a
learning rate of 5e-2, gradient accumulation every 16 steps, a batch
size of 4 per device, and a dropout rate of 0.1. The model with the
lowest development loss was chosen.

4.5 Experiment 3: Evaluating GPT Models in
Post-OCR Tasks

Objective: This experiment aims to achieve two main goals. Firstly,
we assess the performance of GPT-3.5 and GPT-4 in post-OCR tasks,
with a focus on the potential variations when processing texts of differ-
ing familiarity. Specifically, the more frequently a text has appeared
in the GPT models’ training data, the more familiar models should be
with it, highlighting the impact of data contamination [45]. Following
Chang et al. [5], we use the accuracy of GPT in predicting the masked
token to calculate a GPT book familiarity score. Secondly, we com-
pare GPT performance with that of the ByT5 model from Experiment
2. We use gpt-3.5-turbo-0613 and gpt-4-0613 models accessed via
the OpenAI API, with the prompts given in Figure 4.
Datasets: All models, including ByT5 from Experiment 2 without
SSFT, GPT-3.5, and GPT-4, are evaluated using a test set composed
of 14 books from the RETAS dataset. This specific set of books
was curated by Chang et al. [5] as part of a study to ascertain the
prevalence of particular books in the GPT models’ training data,
thereby providing a means of evaluating model performance with
known and unknown texts.
Evaluation metric: CERR.
Models: GPT-3.5, GPT-4, ByT5 (MultiW).

5 Experimental Results
5.1 Experiment 1

The results for our first experiment, summarized in Table 3, provide a
general comparison between the baseline and various models for post-

Figure 4: The prompt provided to GPT models when performing post-
OCR correction in Experiment 3.



OCR correction tasks. Additionally, we conducted comparisons with
the methods used by the original authors of the papers from which the
datasets were sourced (referred to as “Origin” in Table 3). We see that
ByT5 and Flan-T5 considerably enhance OCR outputs across most
datasets, even without leveraging actual OCR text in training. The
performance of the Two-Step and LECS models lags behind that of the
pre-trained large language models, while also falling short of the spell
checker when the data volume is insufficient. Moreover, language
models that are fine-tuned with entirely synthetic data outperform the
techniques employed by the original dataset creators.

Table 3: Performance comparison of models across different datasets.
The highlighted values indicate the best performance per metric for
each dataset.

Model Overproof-2 Overproof-3 TCP

CER WER CER WER CER WER

None 8.5 25.7 10.9 27.6 10.6 30.5
Origin 7.1 16.6 5.6 12.6 4.1 9.8
Hunspell 4.9 13.2 6.3 15.0 7.2 15.2
Two-Step 7.2 17.4 9.2 22.2 8.3 23.4
LECS 7.6 17.2 8.8 20.3 7.0 19.2
mBART 6.2 15.3 7.4 17.8 5.5 13.2
ByT5 4.0 10.6 5.5 14.0 3.5 9.0
Flan-T5 4.2 10.5 5.6 13.7 3.7 9.8

5.2 Experiment 2

Given the strong performance of the ByT5 model in Experiment 1,
along with its effectiveness as reported in the literature [19, 25], we
concentrate exclusively on the ByT5 model in our second experiment.
It took ≈140 hours to fine-tune on the relevant datasets using a RTX
4090, while the SSFT process took ≈2–5 minutes per book.

The results for this experiment are shown in Table 4. It can be
observed that using weak supervision to generate synthetic data from
source data that includes “imprecise" labels can train a model that per-
forms better than one trained without using weak supervision. While
this may seem counter-intuitive, this is because the “imprecise" labels
can enrich the diversity of OCR errors in the synthetic data. When
weak supervision is applied, training with a single noise level can
reduce the Character Error Rate (CER) from 6.64 to 2.71, whereas
multi-noise training can further reduce it to 2.46. Correction samples
from the ByT5 model trained with multi-noise are provided in Table 5.
We see that this model has strong correction capabilities. Correction
failures tend to only occur when the original text contains too many
errors, though “overcorrections” are relatively rare. Furthermore, in-
tegrating SSFT into weak supervision multi-noise training further
improves performance, reducing CER to 2.08, boosting CWRR to
0.887 and IWCR to 0.734 respectively, while also decreasing UWR to
0.0297. In this experiment, we included the Hunspell spell checker as
a further comparison point. Interestingly, it achieved promising UWR
and CWRR scores, indicating its potential for application in cases
specifically requiring conservative correction.

5.3 Experiment 3

To summarize the outcomes of our final experiment, Figure 5 shows
CERR scores versus GPT book familiarity for different models across
various books. We see that ByT5 consistently achieves a CERR score
of ≈ 0.63. In contrast, for GPT-3.5 we observe a mean CERR of ≈
0.44, with some variation across different books. GPT-4 achieved a
considerably higher mean CERR of 0.59, closely aligning with ByT5.

Table 4: Comparison of results on the RETAS English dataset. Here
“Single” denotes training with only one OCR error level, while “multi”
refers to using multiple error levels.

Training Strategy WER↓ CER↓ CWRR↑ IWCR↑ UWR↓

None 20.8 6.64 - - -
Hunspell 13.8 3.73 0.822 0.433 0.0231
Single 10.8 2.78 0.736 0.377 0.0490
SingleW 10.0 2.71 0.737 0.397 0.0493
Multi 9.10 2.49 0.695 0.441 0.0465
MultiW 8.54 2.46 0.711 0.458 0.0458
MultiW + SSFT 6.68 2.08 0.887 0.734 0.0297

Notably, we see no apparent correlation between GPT familiarity and
CERR for the GPT models, suggesting that their performance was not
influenced by prior textual familiarity.

Figure 5: Scatter plot of CERR vs. GPT book familiarity score for
ByT5, GPT-3.5, and GPT-4 models, with mean CERR indicated by
dashed lines.

6 Discussion of Results

The results presented in Section 5 demonstrate the advantages of
using weak supervision to generate multi-noise synthetic data, along
with applying SSFT, for improving post-OCR correction tasks. The
substantial improvement in WER, CER, CWRR, IWCR, and UWR
scores due to the incorporation of SSFT shows the model’s capability
to adapt to specialized vocabulary. A key insight here is that using
source data containing “imprecise" labels during training can lead to
more robust models. The difference in performance between single-
noise level and multi-noise level training, as reported for Experiment
2, highlights the importance of diverse noise distributions during train-
ing to enhance generalization across varied OCR errors. Moreover,
the additional refinement provided by SSFT shows its effectiveness
in adapting models to specific domains, thereby improving preci-
sion when handling specialized vocabulary, which is crucial when
correcting historical texts.

In Experiment 3, we explored the use of GPT models in post-
OCR tasks, revealing mixed results. GPT-3.5 exhibited generally
subpar performance across different texts. GPT-4, while yielding
more promising results, still did not consistently outperform or match
the ByT5 model, which was fine-tuned on synthetic data. Despite
its reasonable performance, using GPT-4 may be impractical due to
its comparatively higher computational and financial costs, making



Table 5: Sample corrections produced by the ByT5 model trained with data containing multiple levels of noise.
Ground Truth OCR Post-OCR
MORE years passed; my mother followed my aunt to the grave, and still
I was as far as ever from making any discoveries in relation to Uncle
George. Shortly after the period of this last affliction my health gave way,
and I departed, by my doctor’s advice, to try some baths in the south of
France.

MorE 9e r passod, my motbcrf)dlowed iy aunt to tbe g2hves and stll
1 wa-s us f’ar as eve4 from jeking Gny diCcovvriee in reltou to Cnole
Qeofgea shor tly tftem the pèriod of fhis laft Affliction my health gavc
wsm3 and 1 dep,rie, by my doLtosrf adveoe tp try some bu.b0 in tbe
foath af ranoe

More years passed, my mother followed my aunt to the grave, and still
I was as far as ever from seeking any discoveries in relation to Uncle
George. Shortly after the period of this last affliction my health gave way,
and I departed by my doctor’s advice, to try some bushes in the death of
France.

"Is he coming?" Clarissa asked, rather anxiously. There was something
ominous in the stillness of the place, and the absence of any sign of life
except George Fairfax’s presence.

"1s he coming 1" Giarissa asked, ratjer anxi.ouslI’ Tberé was aominthig
nminoas in tne t-ilness of tb e pl’aoe. apd the b ence oS any -ign o lite
except Oeorgé airfax’spréaéncè.

"Is he coming?" Clarissa asked, rather anxiously. There was something
noisiness in the tallness of the place, and the absence of any sign of life
except George Fairfax’s presence.

There was a little pause, during which Vane looked hard at the spirit-case.
Then, with the gesture of one under strong emotion, he got up from his
chair and said in a voice whose tone made his father look quickly towards
him:

Hber’ ws a l.ttl’ pause, duriug whicH Tane lookaf hatd St tbe pirit coien
Then, Itb tbe gesturo oi 0 ne undei strong eaoHon, b -jot qp from his
cbalr and suId in avoico woone tone oade his fatlor look qnockly towardf
himi

There was a little pause, during which Vane looked hard at the spirit-coil.
Then, with the gesture of one under strong emotion, he got up from
his chair and said in a voice whose tone made his father look quickly
towards him.

“Of course I do. I’m sure she’s thinking how sweet she is this very
minute.”

* of course I do ’m sure she’s thinking how sweet she is this very minute.
”

–of course I do–I’m sure she’s thinking how sweet she is this very
minute!”

Of course, all the party from the Abbey were present, including Sir
Reginald, who had come down for a few days from town. Enid and her
husband had communicated. It was their first communion since their
marriage. Then they had gone back to their places to await the ordination.

0f ceur.e, al tbe p rt froin the abliep were piosert., including ir reginald,
wbo had come down for -a feo dayf trom town jËnii and hec hit∼and
hsd cemmuni-cated. 1twaa theit iirsi cmmunion snce tlieir ’marriaHe.
Then thep had goue hach to their places to wai-t the frdinatiol.

Of course, all the party from the abbey were present, including Sir
Reginald, who had come down for a few days from town. Hinze and
her husband had communicated. It was their first communion since their
marriage. Then they had gone back to their places to wait the ordination.

Her hair is falling like a veil all round her; through it she looks out at
Rodney with eyes frightened and imploring.

7er bair is fadlir∼.ike a vhid adl ound bér} throgh ht sbè looks out at
rodnev w’tli eyes frighiened and iMpioiing

Her hair is falling like a child all round her. Through it she looks out at
Rodney with eyes frightened and imploring.

"She had for several years attended to the sewing and mending at Elm
Bluff, being summoned there whenever her services were required. On
the afternoon previous to General Darrington’s death she was sitting at
her needlework in the hall of the second story of his house. As the day
was very hot, she had opened the door leading out to an iron balcony,
which projected just over the front hall door downstairs; and since the
piazza was open

”sl.a had i-i eeera ymara attendtd to ile sewmng a.ii manting t rn inluff,
hning eumgo.ed thee wlienever hDr st-rvices were equird .n the iftorroon
pr viets t GererXl darrr.gtos’s dèeh ahc Was iHtting a hu oeedework in
thM hall of thé BecoB stoy of his house. s thf day wue very hof, she ha 1
opcned iie doon leacilng ut tc au iron baicOny, whiAcli projeeted just
over thr tont litl duor d∼m9 tâirsj tid since he pIazza wxa open

“She had in several years attended to the sewing and mantling at an
infant, being renounced there whenever her services were required on
the afternoon previews of General Darrington’s death. She was sitting at
her needlework in the hall of the Rectory story of his house. As the day
was very hot, she had opened the door leading out to an iron balcony,
which projected just over the front hill-door door-stairs; and since the
piazza was open

Her mother laughed. "Am I making a little fuss about you? Is that what
you like?"

Her mothcur laughed. “Am 1 making a little fuss about you? 1s that what
you like?

Her mother laughed. “Am I making a little fuss about you? Is that what
you like?’

The whisper said: "I am your mother." The whisper said.’ “ I im nour motiier.“ The whisper said,–“I am your mother.”
“Hush,” he said, putting his hand to her mouth. “It’s not nice of you to
take it so easily, Nell. I’d tell as many what-d’ye-call-’ems as you like,
rather than put it off an hour. Why, feeling apart (and I don’t think you’ve
any feeling, you little piece of ice), think how inconvenient it would have
been; the people all arriving; the breakfast all ready; the Rector with his
surplice on, and no wedding! Fancy the Jew with all her

**∼nrs ,. he nul, puitin liif buno to iler lnouthA uIt’s uot nice of you
to take itJssjso oaelp, Nell. 1’d tell ns ma .y wiua* d’yé csil.’cms s you
lIk∼ tather than hft it ff an hour whv, s o1lng apart aud 1 1cn’t ∼himk
vf∼’ve any feeieg, you irtle p iece os ice). tini how Inco.vecien it would
have béa« j the eople ail ar-rIvingj the brea∼fat alt rady*, the EeActor
reitb bia surplice on. and e wsdiVin ! fSncy tlie Jew widh all her

*** Mrs.,’ he said, putting his hand to her mouth. ’It’s not nice of you
to take it so so easily, Nell. I’d tell us many wine, d’ye call ’ems if you
like? Rather than left it off an hour (why, strolling apart, and I don’t
think we’ve any feeling, you little piece of ice), till how inconvenient
it would have been; the people all arriving; the breakfast all ready–the
Rector with his surplice on, and he was driving to fancy the Jew with all
her

"Take them all, mes enfants," a huge tone of command filled the darkness.
It was Colonel Dupin. He had that moment arrived. Jacqueline’s message
had reached him in the City not an hour before. The American had
escaped, it said; he was at Tuxtla. The Tiger, knowing nothing of Lopez
lying in wait for the same American at the same place, had dismounted
his men, surrounded town and farms, and was closing in, when Driscoll
himself fell

“ICeke th’m aile mes enya te.“ a huge tpne of cfm mDnd tIlled .he
dsrbnets ir wi 1 . ’ Cudone’ u.in he hqd tbat momenar‘ive∼, Ja -que-inos
massage bai roacis∼tiirn c the cttv net au oor b.es ore fc The ameIcan ha-
fscaJ. ped, it .-aid, hc was rj Txtla. 7he Tioer, kncwing hotbing i LoDe
ytng dn wk so tlie sama aineficrn at tb im -lBice, had Tl.moanl’ hia medi,
su rounJo∼trwn und Iai ms, ond w, at co’s ing iu, wlien nrisC ot bim.rlf
fel

“Kake them after mes envyable.” A huge tone of calm mind filled the
darkness of will. Colonel Juan, he had that momentari veil, Jacqueline’s
message had reached him for the city not an our before, The American
had escaped, it said. He was in Tuxtla. The Tiger, knowing nothing of
Lopez lying down for the same sinecure at the implice, had drawn his
medley surrounded town and jails, and was crossing in, when Frisken
himself fell

it less appropriate for large-scale document collections. Correcting
these 14 books using the gpt-4-0613 model totaled $274.16, whereas
it was $17.21 with gpt-3.5-turbo-0613.

The comparison of various models and training strategies in the
experiments validates the ability of our approach to mitigate OCR
errors and preserve specialized vocabulary, without needing extensive
annotated data. Notably, despite the promising capabilities of larger-
scale models like GPT-4, our methodology, which employs an NMT
model fine-tuned with synthetically generated data, emerges as a
cost-effective and proficient strategy for post-OCR text correction.

7 Conclusion
This work introduced a novel, scalable approach for OCR correction
in diverse text types that incorporates both weak supervision and self-
supervised fine-tuning. By leveraging synthetic data and a dual-phase
fine-tuning process, our method efficiently addresses OCR correction
challenges, particularly in the context of specialized vocabulary and
linguistic nuances found in various texts, such as historical documents
and fictional works. Notably, in our evaluations, the approach achieved
a 68.7% reduction in character errors while substantially preserving
or repairing SV terms. Additionally, we tested the performance of
the GPT model on post-OCR tasks and examined the impact of data
contamination. The experimental results indicate that the trained ByT5
model outperforms the GPT model’s one-shot capability, and the
influence of data contamination on post-OCR tasks is minimal.
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