
Tracking the Evolution of Communities in
Dynamic Social Networks

Derek Greene
School of Computer Science & Informatics,

University College Dublin, Ireland
Email: derek.greene@ucd.ie

Dónal Doyle
Idiro Technologies

Dublin, Ireland
Email: donal.doyle@idiro.com

Pádraig Cunningham
School of Computer Science & Informatics,

University College Dublin, Ireland
Email: padraig.cunningham@ucd.ie

Abstract—Real-world social networks from a variety of do-
mains can naturally be modelled as dynamic graphs. However,
approaches to detecting communities have largely focused on
identifying communities in static graphs. Recently, researchers
have begun to consider the problem of tracking the evolution
of groups of users in dynamic scenarios. Here we describe a
model for tracking the progress of communities over time in
a dynamic network, where each community is characterised
by a series of significant evolutionary events. This model is
used to motivate a community-matching strategy for efficiently
identifying and tracking dynamic communities. Evaluations on
synthetic graphs containing embedded events demonstrate that
this strategy can successfully track communities over time in
volatile networks. In addition, we describe experiments exploring
the dynamic communities detected in a real mobile operator
network containing millions of users.

I. INTRODUCTION

Social network analysis methods have traditionally focused
on the representation of graphs as static networks. This has
been the case for the task of community detection, where the
goal is to identify meaningful group structures in the network.
However, by representing a dynamic source of data as a static
network, group structures present over shorter periods of time
can be difficult to identify or may be completely ablated. In
addition, by discarding temporal information, the detail of the
evolutionary behaviour of these groups is lost.

Modelling structural changes in networks is important in a
wide range of real-world social network analysis problems,
where the data naturally has a temporal aspect. The evolving
nature of social media makes it a candidate for this type
of analysis. Researchers may be interested in examining the
formation and change in communities – such as clusters of
frequently interacting authors in the blogosphere [1], or the
formation of circles of friends in online networks such as
Facebook and Twitter. Other application areas include the
analysis of the evolution of research communities within
and across academic disciplines [2]. A particularly relevant
application is the analysis of mobile subscriber networks [3],
where the activity of groups of users over time are potential
predictors of future behaviour that is of specific interest to net-
work operators, such as subscriber churn or handset adoption.
However, the scale of such networks presents a challenge even
for existing static community finding techniques.

A number of researchers have highlighted the importance
of identifying the key events that characterise the life cycle of

a community of users in a dynamic network [2]. In this paper
we describe a model for tracking the evolution and structure of
communities over multiple time steps in a dynamic network,
where the life-cycle of each community is characterised by a
series of significant events. Based on this model, we propose
a simple but effective method for efficiently identifying and
tracking these dynamic communities, which involves matching
communities found at consecutive time steps in the individual
snapshot graphs. Unlike other approaches (e.g. [2]), the method
is independent of the choice of underlying community finding
algorithm applied to the step graphs. It can also aggregate
information from either disjoint partitions or overlapping
groupings of nodes. To evaluate the method, we introduce a
procedure for generating synthetic dynamic networks, contain-
ing embedded communities and events, to act as a “ground-
truth” for validation. We show that our method performs well
on this data, where it readily scales to networks consisting of
millions of nodes and tens of thousands of communities. In the
second part of our evaluation, we describe our experiments on
real-world mobile operator call graphs generated over a two
month period containing approximately four million unique
users.

The remainder of the paper is structured as follows. In the
next section we provide a brief overview of existing work
in the area of dynamic community finding, also alluding to
other related research areas. In Section III we outline the
proposed model, and provide a detailed description of the
associated tracking method. An evaluation of the operation of
this method on both synthetic networks and mobile call data
is given in Section IV. The paper concludes with a summary
and suggestions for plans for future work.

II. RELATED WORK

A. Dynamic Community Finding

A significant body of literature exists concerning the prob-
lem of finding communities in static graphs. Motivated by
the temporal nature of real-world social networks, some of
this focus has shifted to the topic of mining dynamic graphs.
Palla et al. [2] proposed an extension of the popular clique
percolation method to identify community-centric events in
the evolution of dynamic graphs. This extension involved
applying community detection to joint graphs for pairs of

consecutive time steps. The resulting clique-based commu-
nities are subsequently matched to communities in either of
the individual time steps. This approach was applied to both
mobile subscriber networks and bibliographic co-authorship
graphs. A similar life-cycle model was proposed in [4], where
the dynamic community finding approach was formulated as
a graph colouring problem. Since the problem is NP-hard, the
authors employed a heuristic technique that involves greedily
matching pairs of node sets between time steps, in descending
order of similarity. This technique was shown to perform well
on a number of small well-known social network datasets.

Asur et al. [5] described a community event identification
strategy which used a matching-based approach, which was
implemented in the form of bit operations computed on
time step community membership matrices. This strategy was
applied to both bibliographic networks and clinic trial data in
the context of pharmaceuticals. Unlike other authors, in [5] a
significant emphasis was also placed on the life cycle of nodes
themselves. However this type of analysis may not always be
practical or relevant for larger datasets where network high-
level summarisation is the primary objective, rather than ego-
centric analysis.

B. Other Related Areas

The more general problem of identifying clusters in dy-
namic data has been studied by a number of authors. Notably,
Chakrabarti et al. [6] proposed an “evolutionary clustering”
framework to handle this problem, whereby both current and
historic information was incorporated into the objective of the
clustering process. The authors used this to formulate dynamic
variants of common partitional and agglomerative clustering
algorithms suitable for feature-based data. Evolutionary ver-
sions of common spectral clustering algorithms have also been
proposed [7].

Set matching heuristics have been applied to other problems
that resemble the dynamic community finding task. In data
integration tasks, such techniques have been used as part of
“late integration” strategies to aggregate previously generated
clusterings produced independently on each view of the same
network [8]. More generally, the problem of ensemble cluster-
ing is concerned with combining a diverse set of clusterings to
produce a consensus solution that summarises the information
provided by the constituent clusterings [9]. However, the
unique temporal aspect of the data in dynamic community
detection distinguishes the problem from these other two tasks,
where the sequence of groupings to be aggregated is not
important.

III. METHODS

A. Model for Dynamic Community Analysis

In this section, we provide a generalisation of previously
proposed models for dynamic community finding, focused
around the life cycle of communities. This model is used to
frame and motivate the method described in Section III-B.

Firstly, we represent a dynamic network as a set of time
step graphs {g1, . . . , gl}, providing snapshots of the nodes

t = 1 t = 2 t = 3

C11

C12

C21

C22

C23

C31

C32 F2

F1

F3

D1

D3

D2

Fig. 1. Example of three dynamic communities tracked over three time steps,
featuring continuation, birth, and death community life-cycle events.

and edges in the overall network at successive intervals. The
problem then becomes the identification of a set of k′ dynamic
communities D = {D1, . . . , Dk′} that are present in the
network across one or more time steps. We refer to step
communities that are identified at individual time steps, which
represent specific observations of dynamic communities at a
given point in time. Unlike the approach described in [2], these
need not necessarily comprise of cliques – the observations
can be taken from any disjoint or overlapping grouping that
provides assignments for some or all of the nodes in the overall
network. We denote the set of kt step communities identified
at time t as Ct = {Ct1, . . . , Ctkt

}.
Each dynamic community Di can be represented by a time-

line of its constituent step communities, ordered by time, with
at most one step community for each step t. The diagram in
Figure 1 shows a simple case involving three step clusterings
containing three dynamic communities. The timelines for these
three dynamic communities are straight-forward:

• D1: {C11, C21, C31}
• D2: {C22, C32}
• D3: {C12, C23}

A more complex example is shown in Figure 2. Note that while
there appear to be three distinct branches at time t = 3, there
are in fact four dynamic communities with four corresponding
timelines:

• D1: {C11, C21, C31}
• D2: {C12, C21, C31}
• D3: {C13, C22, C32}
• D4: {C13, C23, C33}
The most recent observation in a timeline is referred to as

the front of the dynamic community – the front for Di is
denoted Fi. The fronts for the three dynamic communities are
highlighted in Figure 1. Note that the dynamic community D3

does not have a corresponding observation at time t = 3 – its
front is the step community C23 from time t = 2.

In the dynamic community finding literature there can be
seen a broad consensus (e.g. [2], [4], [5]) on the fundamental
events that can be used to characterise the evolution of
dynamic communities. Given the notation above, we can
formulate these key events in terms of a set of rules covering

t = 1 t = 2 t = 3

C11

C12

C22

C23

C31

C32

D1

D3

D2

C21

D4

C13

C33

Fig. 2. Example of four dynamic communities tracked over three time steps,
featuring merging and splitting life-cycle events.

step and dynamic communities:

• Birth: The emergence of a step community Ctj observed
at time t for which there is no corresponding dynamic
community in D. A new dynamic community Di con-
taining Ctj is created and added to D. An example in
Figure 1 is the community D2 born in the second time
step.

• Death: The dissolution of a dynamic community Di

occurs when it has not been observed (i.e. there has
been no corresponding step community) for at least d
consecutive time steps. Di is subsequently removed from
the set D. An example in Figure 1 is D3, assuming that
no further step communities are subsequently assigned to
its timeline.

• Merging: A merge occurs if two distinct dynamic com-
munities (Di, Dj) observed at time t−1 match to a single
step community Cta at time t. The pair subsequently
share a common timeline starting from Cta. In Figure 2
the dynamic communities D1 and D2 are both matched
to C21 in the second step.

• Splitting: It may occur that a single dynamic community
Di present at time t − 1 is matched to two distinct step
communities (Cta, Ctb) at time t. A branching occurs
with the creation of an additional dynamic community
Dj that shares the timeline of Di up to time t − 1, but
has a distinct timeline from time t onwards. In Figure 2
an existing dynamic community D3 is matched to both
C22 and C23 in the second step, resulting in the creation
of an additional dynamic community D4.

• Expansion: The expansion or growth of a dynamic com-
munity Di occurs when its corresponding step commu-
nity at time t is significantly larger than the previous front
associated with Di (e.g. a growth of > 10%).

• Contraction: The contraction or reduction of a dynamic
community Di occurs when its corresponding step com-
munity at time t is significantly smaller than the previous
front associated with Di (e.g. a reduction of > 10%).

D1

D2

C11

t = 1 t = 2 t = 4t = 3

C12

C31 C41

C42

Fig. 3. Example of two “intermittent” dynamic communities which are
not observed at all time steps after birth. The dynamic community D1 is
unobserved in the graph at time t = 2, but continues in time t = 3, while
D2 is missing from both t = 2 and t = 3.

We may also have trivial one-to-one matching or continu-
ation events where a dynamic community observed at time t
also has an observation at time t + 1. However, note that a
dynamic community may not necessarily be observed at all
time steps after birth – it may be observed at birth time t
and at death time t′ > t, but may be missing from one or
more intermediate steps (but less than d steps) between t and
t′. Two examples are shown in Figure 3. This reflects the
notion that temporally “intermittent” structure may exist in a
network, which is dependent on the behaviour of the nodes in
the network and the duration or granularity of each time step.

B. Tracking Communities Across Time Steps

In the context of the model described above, a key question
concerns how best to map step communities at each time
t to the existing set of dynamic communities D. Further
questions may arise regarding the feasibility of performing
this correspondence process in an efficient manner for graphs
containing a large number of nodes and communities.

One approach is to formulate this problem as a weighted
bipartite matching task, which involves finding the optimal
correspondence between the dynamic community fronts and
the step communities. A common solution to weighted bipar-
tite matching is the Hungarian method [10]. The strategy of
finding the optimal match between communities in different
time steps was previously considered in [4]. However, in gen-
eral, bipartite matching approaches will assume a zero-to-one
or one-to-one mapping between nodes in the two sets – which
will not readily support the identification of dynamic events
such as community merging and splitting. Rather, we propose
a heuristic threshold-based method, which allows for many-
to-many mappings between communities across different time
steps. Threshold-based cluster aggregation techniques have
previously been employed in dynamic community finding [5],
and also in data integration [8]. This strategy is independent
of the choice of the underlying static community finding
algorithm applied to the individual step graphs.

The strategy proceeds as follows. The first step grouping C1

is generated by applying a chosen static community finding
algorithm to the graph g1 – we use this graph to bootstrap the
process. A distinct dynamic community is created for each step
community. The next grouping C2 is generated on the graph
g2. An attempt is made to match these step communities with

the fronts {F1, . . . , Fk′} (i.e. the step communities from C1).
All pairs (C2a, Fi) are compared, and the dynamic community
timelines and fronts are updated based on the event rules
described previously in Section III-A. The process continues
until all l step graphs have been processed.

To perform the actual matching between Ct and the fronts
{F1, . . . , Fk′}, we employ the widely-adopted Jaccard coeffi-
cient for binary sets [11]. Given a step community Cta and a
front Fi, the similarity between the pair is calculated as:

sim(Cta, Fi) =
|Cta ∩ Fi|
|Cta ∪ Fi|

(1)

If the similarity exceeds a matching threshold θ ∈ [0, 1], the
pair are matched and Cta is added to the timeline for the
dynamic community Di.

For practical purposes, the intersection calculations required
for Eqn. 1 can be performed efficiently using a number of
strategies, including optimisations based on sorted sets [12],
or bit array operations [5]. In the implementation used in this
paper, we represent dynamic communities in terms of a node-
community map against which incoming step communities
are compared. This change leads to substantial performance
improvements when compared to a naı̈ve implementation
based on pairs of set structures – this is reflected in the running
times presented later in Section IV-D.

The output of the matching process between Ct and
{F1, . . . , Fk′} will naturally reveal series of community evo-
lution events. A step community Cta matching to a single
dynamic community indicates a “continuation”, while the case
where Cta matches multiple dynamic communities results in
a merge event. If no suitable match is found for Cta above
the threshold θ, a new dynamic community is created for Cta.
An overview of the entire process is provided in Figure 4.

1. Apply static community finding algorithm on g1 to
extract C1. Initialise D by creating a new dynamic
community for each step cluster C1i ∈ C1.

2. For each subsequent step t > 1, extract Ct from gt.
3. Process every Cta ∈ Ct as follows:

1) Match all dynamic communities Di for which
sim(Cta, Fi) > θ.

2) If there are no matches, create new dynamic
community containing Cta.

3) Otherwise, add Cta to each matching dynamic
community.

4. Update the set of fronts for each dynamic community
to be the latest matched step community. For each
case where one existing dynamic community has been
matched to 2 or more step communities, create a split
dynamic community.

5. Repeat from #2 until all time step graphs have been
processed.

Fig. 4. Summary of the proposed dynamic community finding method.

Note that at any given time step, we can derive a con-
ventional overlapping set of groups from the current dynamic
communities in D. Specifically, for each active (i.e. non-dead)
dynamic community Di with timeline {C1a, . . . , Ctz}, we
construct a corresponding group with the nodes from the union
of the step communities in its timeline {C1a ∪ · · · ∪ Ctz}.
Any exact duplicate groups are removed. We will generally
be interested in those “long-lived” dynamic communities that
persist over more than one time step, rather than potentially
noisy “short-lived” communities that only appear once and
are never observed again. Therefore, groups corresponding to
short-lived communities are also removed. As an example,
for D4 in Figure 2, the corresponding overlapping group will
consist of the nodes contained in {C13 ∪ C23 ∪ C33}.

IV. EVALUATION

A. Benchmark Network Generation

We wanted to examine the behaviour of the proposed
approach on dynamic networks in the presence of the evolution
events described previously using a form of ground truth.
However, to the best of our knowledge no comprehensive
benchmarks have been proposed for this purpose. Previously,
attempts at synthesizing dynamic network data have used
artificial data based on simple membership switching. For
instance, Tang et al. [13] described an approach for generating
small-scale synthetic multi-mode dynamic network data, by
generating a set of latent communities, and randomly changing
a proportion of community memberships at each stage. Simi-
larly, Duan et al. [14] generated synthetic streams of random
weighted directed graphs with embedded community structure,
where the community structure changes between four different
time slices. Lin et al. [1] adapted two well-known toy networks
to produce additional time step networks using membership
switching and corresponding changes to node edges.

To produce more realistic benchmark data, we developed
an alternative set of benchmarks based on the embedding
of events in synthetic graphs. Lancichinetti & Fortunato [15]
proposed techniques for generating static networks with em-
bedded ground truth communities, which can be used for
benchmarking community finding techniques. A network is
generated based on a user-specified set of parameters related
to network size, node degree range, and community size.
The generator uses these parameters to construct a suitable
set of embedded communities around which the network is
constructed.

We adapted the tool provided by Lancichinetti & Fortunato
to generate sets of unweighted undirected time step graphs.
These graphs share similar characteristics, but each has com-
munity memberships (and edges) that have been permuted in a
particular way. The change is controlled through the injection
of a user-specified number of community events of a specific
type. In this way the generator produces a ground truth for
quantitative evaluation, in the form of a set of dynamic com-
munity timelines. A small example dynamic graph produced
by the generator is shown in Figure 5, involving 100 nodes,

t = 1

t = 2

D2

D3

D4

D1

D2

D3

D1

Fig. 5. Simple benchmark dynamic graph representing 100 nodes over
two time steps. At time t = 2, a split event occurs, where the embedded
community D1 divides into the pair of communities (D1, D4).

four embedded dynamic communities, and a single merge
event.

For the evaluations described here, we constructed four
different synthetic networks for four different event types,
covering 15,000 nodes over 5 time steps. The time step
graphs share a number of parameters with the generation
process described by Lancichinetti & Fortunato: nodes have
mean degree of 20, maximum degree of 40, and a mixing
parameter value of µ = 0.2 which controls the level of edges
between communities. The networks began at t = 1 with
≈ 400 embedded communities, which were constrained to
have sizes in the range [20, 60]. In each of the four synthetic
datasets, 20% of node memberships were randomly permuted
at each step to simulate the natural movement of users between
communities over time. Subsequently, embedded events were
added by the generator as follows:

1) Intermittent communities: In the first dataset, we con-
sider the case of “intermittent” communities. We randomly
hide a certain proportion of the communities from the original
set C1 at each time step – 10% of communities are unobserved
from time t = 2 onwards.

2) Expansion and contraction: To examine the effect of
rapid community expansion and contraction, we created graphs

where 40 randomly selected communities expand or contract
by 25% of their previous size. In the case of expansion, the
new community members are chosen at random from other
communities.

3) Birth and death: To replicate the creation and destruc-
tion of communities, we create 40 additional communities
by removing nodes from other existing communities, and
randomly remove 40 existing communities.

4) Merging and splitting: Finally, we considered the case
where community merging and splitting events are embedded.
Based on an initial set of communities, at each subsequent
time step, 40 instances of community splitting was introduced,
together with 40 cases where two existing communities were
merged.

B. Experimental Setup

As noted previously, our dynamic community finding ap-
proach is independent of the choice of the underlying static
community finding algorithm applied to the individual time
steps. For our experiments we use the modularity optimisa-
tion algorithm introduced by Blondel et al. [16]. Since this
algorithm tends to produce a hierarchical structure with a
limited number of levels, in our benchmark experiments we
derive a disjoint partition of the nodes by selecting the level
where the number of communities is closest to the number of
communities in the ground truth at time t = 1.

The validation of dynamic community finding techniques is
not straight-forward. Based on the ground-truth available in
the synthetic networks, we make use of conventional cluster
validation techniques as follows. After each time step t, we
derive an overlapping grouping from the set of active dynamic
communities identified by our approach, as described in Sec-
tion III-A. We can use the generalised form of Normalised
Mutual Information (NMI) introduced in [17] to compare the
memberships of nodes in this grouping relative to those in
the grouping derived in the same manner on the ground truth
dynamic communities at the same time step.

We used a C++ implementation of the proposed dynamic
community finding method. We ran the experiments using
a single core on a standard Pentium Intel Quad 2.40GHz
machine with 6GB RAM. The implementation, together with
the synthetic graphs used in our experiments, are available
online1.

C. Discussion of Benchmark Results

In our experiments we investigated a range of threshold
parameters θ ∈ [0.1, 0.5], with a fixed maximum age d = 3 for
determining dead communities. As a baseline for comparison,
we consider the traditional “static” approach of applying
community finding to the graph constructed from aggregating
edges across multiple time steps. Specifically, for each step
t we apply the Blondel algorithm to the aggregated graph
constructed from the edges in {g1 ∪ · · · ∪ gt}. For comparison
purposes we also select the level in the resulting hierarchy
closest to the “correct” number of embedded communities.

1See http://mlg.ucd.ie/dynamic

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
o
rm

a
lis

e
d
 M

u
tu

a
l
In

fo
rm

a
ti
o
n
 (

N
M

I)

Time Step (t)

Static
Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(a) “intermittent” communities

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
o
rm

a
lis

e
d
 M

u
tu

a
l
In

fo
rm

a
ti
o
n
 (

N
M

I)

Time Step (t)

Static
Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(b) expansion and contraction events

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
o
rm

a
lis

e
d
 M

u
tu

a
l
In

fo
rm

a
ti
o
n
 (

N
M

I)

Time Step (t)

Static
Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(c) birth and death events

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
o
rm

a
lis

e
d
 M

u
tu

a
l
In

fo
rm

a
ti
o
n
 (

N
M

I)

Time Step (t)

Static
Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

(d) merging and splitting events

Fig. 6. Performance, in terms of Normalised Mutual Information (NMI), of the proposed dynamic community finding method on four synthetic networks
containing different types of embedded community events.

Figure 6 shows a comparison of the output of the two
strategies in terms of NMI accuracy, relative to the ground
truth communities, as calculated after the addition of each time
step graph from the four benchmark networks. These networks
exhibit considerable volatility in terms of community structure
and associated internal/external community edges between
time steps. It is interesting to note that the static approach
performs poorly under these conditions – the addition of
additional edges from extra time steps does not provide the
community detection algorithm with a clearer picture of the
network. On the contrary, the decreasing NMI scores with
time show that performance degrades as contradictory edge
information is added.

We see from Figure 6 that the choice of the parameter θ has
a noticeable effect on the performance of the dynamic strategy.
Low values of θ lead to the most consistent accuracy scores
across the five time steps. This observation is unsurprising, as
the changing community memberships and sizes between time
steps make higher values for Eqn. 1 unlikely. However, for all
parameter values consider, the dynamic method was superior
after more than two time steps had been added. In terms of
the number of distinct overlapping groups derived from the
dynamic timelines, Figure 7 shows a representative example of
the effect of changing the value of θ on the merge/split dataset.
For a low value (θ = 0.1), the number of groups is consid-

erably higher than in the ground truth, where many of these
groups are near duplicates. Whereas for a relatively high value
(θ = 0.5), the number of groups is lower. We observe that,
since higher θ values naturally enforce a more conservative
matching behaviour, this leads to more once-off short-lived
communities which are subsequently discarded. In general,
across all networks, a moderate value of θ = 0.3 provided
a reasonable compromise between node assignment accuracy
and the identification of the optimal number of communities.
Interestingly, the static strategy consistently under-estimated
the true number of communities, particularly as the number
of steps increased. Taken in conjunction with the results from
Figure 6, we surmise that the merging of time steps prior to
community identification does indeed partially or fully obscure
a portion of the community structures in the network.

In general, when examining various network generation
parameters, we observed that the static approach proved ef-
fective in cases where there was relatively little volatility
between time steps, even when the community structures were
relatively poorly defined within time steps (i.e. high inter-
community connectivity). In this case the simple aggregation
of the persistent edges was sufficient to uncover community
structure. In contrast, the proposed dynamic strategy was most
successful in cases where communities were evolving rapidly
across time steps. Our experiences with mobile call data,

 0

 250

 500

 750

 1000

 1250

 1500

 1 2 3 4 5

N
u
m

b
e
r

o
f
C

o
m

m
u
n
it
ie

s

Time Step (t)

Ground Truth
Static

Dynamic (0.1)
Dynamic (0.3)
Dynamic (0.5)

Fig. 7. Number of overlapping communities found on a synthetic dynamic
network containing embedded merging and splitting events, relative to the
number of communities in the ground truth.

described later, suggest that the latter scenario is more likely
to occur in many real-world dynamic networks.

D. Evaluation of Scalability

To examine the scalability of the method described in
Section III, we used the synthetic graph generation process to
produce dynamic networks of successively larger sizes, with
the membership 5% of nodes switching from one step commu-
nity to another. In each case, 5 time steps were produced using
the same parameters described previously, and the experiments
were repeated over 10 iterations.

Figure 8 shows that the scaling of the dynamic community
method is close to linear in the number of nodes in the
graph. For θ = 0.5, a dynamic network with 100k nodes
can be processed in under 2 seconds – resulting in 7035
dynamic communities. A graph containing 1 million nodes
can be processed in approximately 85 seconds, resulting in
the discovery of over 70k dynamic communities. Similarly,
the number of maintained dynamic communities does not
significantly impact on running times. We observed almost
identical patterns on the same synthetic graphs for other
matching parameter values θ ∈ [0.2, 0.7]. The time to run the
underlying Blondel algorithm ranged from a few milliseconds
up to ≈ 40 seconds for the million node graph.

In these experiments, the primary constraint preventing us
from applying the proposed method to networks beyond this
point was the prohibitive memory requirements for generating
synthetic graphs with more than 106 nodes. Since the majority
of the computation (i.e. calculating front-step community sim-
ilarities) can be performed independently, we suggest that sig-
nificant scope exists for parallelising the procedure to further
improve computational performance. Even with the current
implementation, we can readily process dynamic graphs far
larger than those that can handled by methods such as those
based on clique percolation [2].

E. Application to Real-World Data

In our second evaluation, we applied the proposed method
to a real mobile operator network. Specifically we examined

1e+01

1e+02

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05 1e+06

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Nodes

Fig. 8. Plot of running time in milliseconds against number of nodes, for the
proposed dynamic community finding method (θ = 0.5) on synthetic graphs
of increasing size from 1,000 to 1 million nodes.

weekly voice call graphs over eight consecutive weeks, each
containing approximately four million unique subscribers and
tens of millions of edges. We preprocessed the data to produce
unweighted, undirected graphs. A small number of nodes with
unusually high degree in a given weekly call graph (calls to
> 250 other nodes) were removed – these typically represent
service numbers which can potentially obscure genuine user
communities. Initial experiments on single week time steps
yielded unstable results, suggesting that there may be insuffi-
cient structure in a week-long interval. To address this issue,
we constructed longer time slices covering a two week period
(with no overlap), yielding four separate time step graphs.
Here we focus on the application of the proposed dynamic
community finding method to these fortnightly graphs.

Due to its computational efficiency, we again applied the
Blondel modularity optimisation algorithm [16] to produce
sets of disjoint step communities for each step graph – this
process took approximately 15 minutes in each case. We
truncated the resulting hierarchy of communities at the first
level. This yielded over 200,000 distinct step communities for
each fortnightly interval.

Based on the analysis of benchmark data described in
Section IV-C, we selected a matching threshold value of
θ = 0.3. The full procedure ran in just over 19 minutes,
producing ≈ 150k long-lived dynamic communities present
in at least two time steps. Of these, ≈ 27% communities were
visible in three time steps, and ≈ 9.6% were observed across
the full two month period. When overlapping groups were
derived from the long-lived community timelines, about 80%
of the communities contained between 5 and 15 users, which
roughly corresponded to our prior assumptions regarding user
calling patterns.

In addition to the implicit birth and continuation events, a
range of other community timeline events and behaviours were
detected in the data. For instance, we identified 82k long-
lived communities exhibiting intermittent behaviour – these
were born, unobserved for 1-2 steps, and then reappeared at
a later time. Approximately ≈ 24k community merge events
were detected in the four intervals. In many cases multiple

t = 1 t = 2 t = 3 t = 4

Fig. 9. Example of dynamic community merge events identified in the
dynamic analysis of a mobile subscriber network, over an 8 week period
divided into 4 time steps.

inter-related merge events occurred at successive steps. A
representative example is shown in Figure 9, where we see
a number of dynamic communities merged at consecutive
times periods. A smaller number of ≈ 4k community split
events was also detected in the network. Further work on this
data will focus on the identification of clusters of dynamic
communities sharing characteristic timeline signatures, such
as the one shown in Figure 9.

V. CONCLUSIONS

In this paper, we have described both a general model
for tracking communities in dynamic networks, and a fast,
effective method based on that model which readily scales to
graphs with ≈ 106 nodes and 107 edges. We have described an
approach for benchmarking dynamic community finding using
synthetic graphs with embedded community events. Evalu-
ations on these synthetic networks show that the proposed
method performs at least as well if not better than static com-
munity finding. Additionally we have performed a preliminary
evaluation on a real-world mobile call network. On this data
our method uncovered a large number of dynamic communi-
ties in this network with different evolutionary characteristics,
while requiring relatively little computational overhead. Our
experiments on this network suggest that the choice of the
time step window size is important – this is an issue common
to many dynamic data analysis procedures [6]. It will be
interesting to study in detail the impact that this choice has
on the quality and stability of dynamic communities.

The fact that our proposed method is independent of the
choice of underlying algorithm is advantageous from one point
of view – a suitable algorithm can be selected depending on
the characteristics of the network (e.g. weighted/unweighted,
directed/undirected, disjoint/overlapping communities). How-
ever, an interesting avenue for further work would be to
integrate the proposed model with a scalable overlapping
community detection algorithm, so that information from
dynamic community timelines can be used to seed or direct
the community finding algorithm in the next time step.

ACKNOWLEDGMENTS

This research was supported by Science Foundation Ireland
(SFI) Grant No. 08/SRC/I1407. The authors thank Idiro Tech-
nologies for their participation in the analysis of the mobile
operator network.

REFERENCES

[1] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: a
framework for analyzing communities and their evolutions in dynamic
networks,” in Proceeding of the 17th international conference on World
Wide Web (WWW’08), 2008, pp. 685–694.

[2] G. Palla, A. Barabási, and T. Vicsek, “Quantifying social group evolu-
tion,” Nature, vol. 446, no. 7136, p. 664, 2007.

[3] B. Wu, Q. Ye, and S. Yang, “Group CRM: a new telecom CRM
framework from social network perspective,” in Proceedings of the 1st
ACM International Workshop on Complex Networks in Information and
Knowledge Management (CNIKM), Hong Kong, China, 2009.

[4] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework for
community identification in dynamic social networks,” in Proceedings
of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’07), 2007, pp. 717–726.

[5] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework for
characterizing the evolutionary behavior of interaction graphs,” in Proc.
13th ACM SIGKDD international conference on Knowledge Discovery
and Data mining. ACM, 2007, p. 921.

[6] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, p. 560.

[7] Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng, “Evolutionary spectral
clustering by incorporating temporal smoothness,” in Proc. 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2007, p. 162.

[8] D. Greene and P. Cunningham, “Multi-view clustering for mining hetero-
geneous social network data,” in Workshop on Information Retrieval over
Social Networks, 31st European Conference on Information Retrieval
(ECIR’09), 2009.

[9] E. Dimitriadou, A. Weingessel, and K. Hornik, “A combination scheme
for fuzzy clustering,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 16, no. 7, pp. 901–912, 2002.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quaterly, vol. 2, pp. 83–97, 1955.

[11] P. Jaccard, “The distribution of flora in the alpine zone,” New Phytolo-
gist, vol. 11, no. 2, pp. 37–50, 1912.

[12] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,”
in Proceedings of the 15th Annual Symposium on Combinatorial Pattern
Matching (CPM 2004), vol. 3109. Springer, 2004, pp. 400–408.

[13] L. Tang, H. Liu, J. Zhang, and Z. Nazeri, “Community evolution in dy-
namic multi-mode networks,” in Proc. 14th ACM SIGKDD international
conference on Knowledge Discovery and Data mining. ACM, 2008,
pp. 677–685.

[14] D. Duan, Y. Li, Y. Jin, and Z. Lu, “Community mining on dynamic
weighted directed graphs,” in Proceeding of the 1st ACM international
workshop on Complex networks meet information & knowledge man-
agement. New York, NY, USA: ACM, 2009, pp. 11–18.

[15] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” eprint arXiv: 0904.3940, 2009.

[16] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” J. Stat. Mech, vol. 10008, 2008.

[17] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlapping
and hierarchical community structure of complex networks,” New J.
Phys, vol. 11, p. 033015, 2009.

