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Abstract. In many domains there will exist different representations or
“views” describing the same set of objects. Taken alone, these views will
often be deficient or incomplete. Therefore a key problem for exploratory
data analysis is the integration of multiple views to discover the under-
lying structures in a domain. This problem is made more difficult when
disagreement exists between views. We introduce a new unsupervised
algorithm for combining information from related views, using a late in-
tegration strategy. Combination is performed by applying an approach
based on matrix factorization to group related clusters produced on indi-
vidual views. This yields a projection of the original clusters in the form
of a new set of “meta-clusters” covering the entire domain. We also pro-
vide a novel model selection strategy for identifying the correct number
of meta-clusters. Evaluations performed on a number of multi-view text
clustering problems demonstrate the effectiveness of the algorithm.

1 Introduction

In many data analysis tasks there will naturally exist several different ways to
describe the same set of data objects. This leads to the availability of multiple
distinct representations or “views” that encode patterns relevant to the domain
[1]. The question then arises, how can we integrate these representations in a way
that allows us to effectively identify and explore these patterns? For some data
exploration applications, we may have access to a set of views that are entirely
compatible – the same patterns will occur across all views. The problem then
becomes the identification of a single consensus model describing the patterns
common to all views [2]. In other cases significant discord may exist between the
data in different views [3]. An effective data integration procedure must then rec-
oncile these disagreements, identifying common patterns, while also preserving
those that are unique to each view.

In this paper we propose a simple but effective algorithm for combining
data from multiple views, based on a late integration strategy [4]. The proposed
approach, referred to as Integration by Matrix Factorization (IMF), takes repre-
sentative clusterings generated independently on each available view, constructs
an intermediate matrix representation of those clusterings, and applies a factor-
ization procedure to this representation to reconcile the groups arising from the
individual views. The factorization procedure preserves the contribution of the



original clusters to the new groups, thereby highlighting the contribution made
by each of the views. In addition we propose an entropy-based model selection
procedure for automatically identifying the number of groups. To evaluate our
approach we consider the problem of organizing topical news stories, represented
by related text documents distributed across multiple views. These evaluations
indicate that IMF can address common issues arising in real-world integration
problems – such as disagreement between views, noisy views, and missing data.

This paper is organized as follows. Section 2 provides a brief overview of ex-
isting techniques for matrix factorization and fusing data from different sources.
In Section 3 we discuss various issues that frequently arise when integrating
multiple datasets in practice, and describe the proposed algorithm in detail. In
Section 4 we present an empirical evaluation of the algorithm on synthetically-
generated multi-view text datasets, followed by an evaluation on a real-world
integration problem in Section 5. The paper finishes with some conclusions and
suggestions for future work in Section 6.

2 Related Work

2.1 Matrix Factorization

Lee & Seung [5] proposed Non-negative Matrix Factorization (NMF), an un-
supervised approach for dimensionality reduction, which approximates a data
matrix as a product of factors that are constrained so that they will not contain
negative values. By modeling each object as the additive combination of a set of
non-negative basis vectors, a readily interpretable clustering of the data can be
produced without further post-processing. These basis vectors are not required
to be orthogonal, which facilitates the discovery of overlapping groups. The fac-
torization process itself involves minimizing the difference between the original
data and the approximation, most commonly by iteratively applying a pair of
multiplicative update rules until the process converges to a local minimum [5].

2.2 Ensemble Clustering

In an unsupervised ensemble learning scenario we have access to a collection
of “base clusterings”, consisting of different clusterings generated on data orig-
inating from the same source. These clusterings represent the members of the
ensemble. The primary aim of ensemble clustering [6] is to aggregate the in-
formation provided the ensemble members to produce a more accurate, stable
clustering. A variety of strategies have been proposed to combine an ensemble
to produce a single solution. For instance, the most widely-used strategy has
been to consider information derived from the base clusterings to determine the
level of co-association between each pair of objects in a dataset. Once a pair-
wise co-association matrix has been constructed, a standard algorithm such as
single-linkage agglomerative clustering [7] or multi-level graph partitioning [6] is
applied to produce a consensus clustering. The latter formulation was referred to
by the authors as the Cluster-based Similarity Partitioning Algorithm (CSPA).



Rather than merely examining the pairwise relations between data objects,
several authors have suggested examining the relations between the actual clus-
ters contained in all base clusterings. Strehl & Ghosh [6] proposed the Hyper-
Graph Partitioning Algorithm (HGPA), which involves transforming disjoint
base clusterings to a hypergraph representation. Each node in the hypergraph
represents a data object, and hyperedges are defined by the base cluster bi-
nary membership vectors. Subsequently a consensus clustering is produced by
partitioning the hypergraph using the METIS algorithm [8].

The task of aggregating multiple clusterings can also be viewed as a cluster
correspondence problem, where similar clusters from different base clusterings
are matched together to produce a single “average clustering”. Strehl & Ghosh
[6] described a solution, referred to as the Meta-CLustering Algorithm (MCLA),
which involves constructing a hypergraph where each hyperedge represents a
cluster. The edges of the graph are then divided into a balanced k-way parti-
tion. Based on this edge partition, a majority voting scheme is used to assign
data objects into the final clusters. The correspondence problem has been tack-
led by a number of other authors using cumulative voting ensemble clustering
schemes, which are based on the assumption that there will be a direct relation-
ship between individual clusters across all the base clusterings [9].

2.3 Data Integration

Blum & Mitchell [1] initially proposed the application of machine learning tech-
niques in a multi-view setting, a problem which arises in domains where the
data objects will naturally have several different representations. A useful broad
distinction between techniques in this area was described by Pavlidis et al. [4],
who identified three general data integration strategies: early integration involves
the direct combination of data from several views into a single dataset before
learning; intermediate integration involves computing separate similarity matri-
ces on the views and producing a combined pairwise representation which is
then passed to the learning algorithm; and late integration involves applying an
algorithm to each individual view and subsequently combining the results.

While theoretical work in this area has largely focused on supervised learning
problems, researchers have also considered the problem of producing clusterings
from several different data sources. For instance, Bickel & Scheffer [2] proposed
multi-view extensions of existing partitional and agglomerative clusterings algo-
rithms. These algorithms were applied to the problem of clustering web pages,
as represented by both textual information and hyperlinks. A general two-stage
framework for reconciling discordant views in an unsupervised setting was de-
scribed by Berthold & Patterson [3]. Other approaches have included minimiz-
ing the disagreement between views by casting the integration problem as an
instance of bipartite spectral clustering [10], or as a semi-supervised clustering
task where pairwise constraints generated from one view are used to influence
the clustering process in another [11]. Both of these approaches are naturally
limited to scenarios involving pairs of views.



3 Methods

3.1 Motivation

Given a set of views {V1, . . . , Vv}, let {x1, . . . , xn} denote the complete set of
data objects present in the domain (i.e.V1 ∪ V2 · · · ∪ Vv). The data integration
task involves producing a complete clustering of the n objects to uncover all
significant underlying “patterns” or groups present in the domain. In practice
such integration tasks will often encounter one or more of the following issues:

Diversity of representation: In some views a feature-based representation
will be available for data objects, while in other views only relation-based
representations will be available, often in the form of graphs or networks.

Incomplete views: A representation for a data object in each view will not
always be available. Rather, each view will often contain a subset of the
total set of data objects in the domain.

Missing patterns: Patterns may be present in the data in one view, but largely
or entirely absent from another view. As a consequence the number of pat-
terns in each view will also vary.

Disagreement between views: The assignment of data objects to patterns
may be inconsistent between views. Such disagreements can arise due to the
unique characteristics of problem domain, or can simply be the result of
noise within a view.

With the above requirements in mind, we propose a factorization-based for-
mulation of the late integration [4] strategy for exploring domains were two
or more related views exist. This approach, referred to as Integration by Matrix
Factorization (IMF), takes representative clusterings generated independently on
each individual view (using an algorithm appropriate for that view), constructs
an intermediate representation of the clusterings, and decomposes this represen-
tation to reconcile the groups arising from the individual views. The fact that
IMF operates on previously generated clusterings alone, rather than any specific
representation of the original data, neatly avoids the diversity of representation
issue. Late integration brings a number of additional benefits: the ability to har-
ness parallel computing resources by processing large data views separately, the
aggregation of information from views where privacy issues arise (e.g.financial,
legal or commercially-sensitive data), and the facility to reuse knowledge avail-
able in existing legacy clusterings [6]. Later in Section 4 we demonstrate that the
IMF algorithm can also address the other key integration issues of incomplete
views, missing patterns, and disagreement between the set of available views.

3.2 Integration by Matrix Factorization

Intermediate representation. Formally we have access to a set of representa-
tive clusterings C = {C1, . . . , Cv}, one per view, where Ch indicates the set of kh

clusters {c1
h, . . . , ckh

h } generated on the view Vh. The sum l =
∑v

i=1 ki is the total
number of clusters generated on all views. The clusterings may be generated by



an algorithm that produces a disjoint partition (e.g. standard k-means or the
kernelized equivalent), probabilistic clusters (e.g.EM clustering), or arbitrary
non-negative membership weights (e.g.NMF). Hierarchical clusterings can be
combined by applying a suitable cut-off strategy to produce a disjoint partition.
However, for the remainder of this paper we focus on disjoint clusterings.

The constituent clusterings in C can be represented by a set of non-negative
membership matrices M = {M1, . . . ,Mv}, where Mh ∈ IRn×kh represents the
cluster membership of objects in Ch generated on view Vh. For objects which are
not present or clustered in a given view, the corresponding row in the membership
matrix of the clustering for that view will contain zero values. By transposing
the matrices in M and stacking them vertically, we can construct a matrix of
clusters X ∈ IRl×n. Each row in X now corresponds to an individual cluster
from the clusterings in C, while each column corresponds to a data object in the
original domain. Following the discussion in [6], conceptually we can view this
representation as the adjacency matrix of a hypergraph consisting of n vertices
and l weighted hyperedges. Alternatively we can interpret the columns of X as
an embedding of the original objects in a new l-dimensional space.

Factorization process. The goal of the integration process is to project the
clusters in C to a set of k′ < l new basis vectors or “meta-clusters”, where
k′ represents the number of underlying patterns present in the domain. These
meta-clusters represent the additive combinations of clusters generated on one or
more different views. Clusters generated on the same view can also be grouped
together. This may be desirable in cases where a pattern has been incorrectly
split in a view, or where the constituent clusterings are generated at a higher
resolution than is required for the integrated solution.

Formally, the process involves producing an approximation of X in the form
of the product of two non-negative factors:

X ≈ PH such that P ≥ 0 , H ≥ 0

where the rows of P ∈ IRl×k′
represent the projection of the original clusters to a

set of new basis vectors representing k′ “meta-clusters”. These meta-clusters can
be additively combined using the coefficient values from the matrix H ∈ IRk′×n

to reconstruct an approximation of the original set of clusters in X. Furthermore,
each column in H can be viewed as the membership of the original complete set
of n data objects with respect to the k′ meta-clusters.

To measure the reconstruction error between the original matrix X and the
pair of factors (P,H) we can compute the Frobenius norm:

||X−PH||2F =
l∑

i=1

n∑
j=1

[Xij − (PH)ij ]
2 (1)



To minimize Eqn. 1 we iteratively apply the multiplicative update rules proposed
by Lee & Seung [5]:

Pic ← Pic
(XH

T

)ic

(PHHT)ic

Hcj ← Hcj
(P

T

X)cj

(PTPH)cj

The rules are applied until the change in the objective (Eqn. 1) between one
iteration and the next is below an arbitrarily small value. The computational cost
of each iteration is O(lnk′) when using dense matrix multiplication operations.

The additive nature of the factorization procedure can be useful in interpret-
ing the results of the integrating process. Based on the values in the projection
matrix P, we can calculate a matrix T ∈ IRv×k′

indicating the contribution of
the view Vh to each meta-cluster:

Thf =

∑
cj

f∈Cf
Pjf∑l

g=1 Pgf

(2)

That is, the sum of the projection weights in P for the clusters generated on
Vh, normalized with respect to the total projection weight for each meta-cluster
(i.e. the column sums of P). A value Thf close to 0 indicates that the view Vh

has made little contribution to the f -th meta-cluster, while a value close to 1
indicates that the view Vh has made the predominant contribution.

To illustrate the integration process, Figure 1 shows a simple problem involv-
ing objects {x1, . . . , x7} represented in two views. The corresponding clusterings
C = {C1, C2} are transformed to the intermediate representation X, and factor-
ization is applied to yield the matrices (P,H). The entries in P illustrate how
the clusters from these clusterings are combined to produce k′ = 3 meta-clusters.
The actual object membership weights for these meta-clusters are shown in H.

C1 = {{x1, x2, x3}, {x4, x5}}

C2 = {{x6, x7}, {x1, x2}}
X





1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 1 0 0 0 0 0





x1 x2 x3 x4 x5 x6 x7
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0.6 1.0 0.0
0.4 0.0 1.0

]





1.2 0.0 0.0
0.0 1.2 0.0
0.0 0.0 1.2
0.9 0.0 0.0
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T

X ≈ PH





1.0 0.0 0.0
1.0 0.0 0.0
0.5 0.0 0.0
0.0 0.8 0.0
0.0 0.8 0.0
0.0 0.0 0.8
0.0 0.0 0.8
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Fig. 1. Example of IMF applied to clusterings from two views generated in a domain
containing 7 data objects. A value of k′ = 3 is used for the number of meta-clusters.



The contributions made by the two views to the meta-clusters are given by the
entries on the rows of the matrix T.

Factorization initialization. The sensitivity of NMF-like algorithms to the
choice of initial factors has been noted by a number of authors [12, 13]. While
stochastic initialization is widely used in this context, ideally we would like to
produce a single integrated clustering without requiring multiple runs of the
integration process. Therefore to initialize the integration process, we populate
the pair (P,H) by employing the deterministic NNDSVD strategy described by
Boutsidis & Gallopoulos [13]. This strategy applies two sequential SVD processes
to the matrix X to produce a pair of initial factors. In addition to being deter-
ministic, NNDSVD is suitable in the context of integration as it has a tendency
to produce comparatively sparse factors. As we shall see in the next section this
is particularly desirable in the case of the projection matrix P.

3.3 Model Selection

The selection of a suitable value for the number of meta-clusters k′ is central to
the data integration process. A value that is too low could force unrelated clusters
to be grouped together, while a value that is too high could potentially cause
the integration process to fail to merge related clusters from different views.

When selecting a model we consider the uncertainty of the mapping between
clusters from different views, based on the uncertainty of the values in the pro-
jection matrix P. Firstly we normalize the rows of P to unit length, yielding
a normalized matrix P̂ ∈ [0, 1]. In the ideal case each row in P̂ will contain a
single value 1 and (k′ − 1) zeros, signifying that the corresponding base cluster
has been perfectly matched to a single meta-cluster. This notion of uncertainty
can be formally described in terms of the normalized entropy of the rows in P̂.

To illustrate this, we refer back to the previous example (Figure 1) of combin-
ing two clusterings. Figure 2 shows normalized project matrices corresponding
to models for k′ = 3 and k′ = 4 respectively. In the latter case the integration
procedure splits cluster c1

1 between two meta-clusters (instead of matching it
solely with c2

2, which it subsumes as shown in Figure 1). Consequently the val-
ues in the first row of P̂ have a higher level of entropy. In contrast the matrix for
k′ = 3 shows a perfect match between each cluster from C and one of the three
meta-clusters, suggesting that this model is more appropriate for the problem.





1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0




P̂

c1
1

c2
1

c1
2

c2
2

(k′ = 3) (k′ = 4)
P̂





0.4 0.0 0.0 0.6
0.0 1.0 0.0 0.0
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Fig. 2. Example of model selection for data integration applied to clusterings from two
views, using two candidate values for the number of meta-clusters k′.



To identify an appropriate number of meta-clusters k′, we can test values
from a broad range k ∈ [kmin, kmax] informed by the user’s knowledge of the
domain. For each candidate k we construct P̂. For each row j in this matrix we
calculate the normalized entropy of the projection values:

e(P̂j) = − 1
log k

k∑
h=1

Pjh log (Pjh) (3)

An evaluation s(k) ∈ [0, 1] for the suitability of the model with k meta-clusters
is given by subtracting the mean row entropy from 1:

s(k) = 1− 1
l

l∑
j=1

e(P̂j) (4)

A value for the final number of meta-clusters k′ can be chosen so as to maximize
the value of Eqn. 4.

In practice we observe that Eqn. 4 will not have an expected value of zero
when combining randomly generated clusterings, and will exhibit a bias toward
higher values of k. We can readily address this by employing the widely-used
adjustment technique described in [14] to correct for chance agreement:

ŝ(k) =
s(k)− s̄(k)
1− s̄(k)

(5)

The value s̄(k) is the expected evaluation score for a factorization containing
k meta-clusters. In practice we can find an approximation for s̄(k) by applying
the following for a sufficiently large number of runs: take a given intermediate
matrix X, randomly permute the values in the columns, apply factorization with
parameter k, and recalculate Eqn. 4. The expected value is given by the mean
of s(k) across all permutations.

3.4 Ensemble Multi-View Integration

The “one-shot” integration scenario described in Section 3.2 assumes the avail-
ability of a definitive clustering for each view. However, in many cases a variety
of different clusterings may be available for each view – either generated on dif-
ferent subsets of the data in a view, produced using different parameter values, or
simply as a result of the use of a clustering algorithm that converges to different
local minima (e.g. k-means with random initialization). In many cases ensemble
clustering techniques can harness the diversity present in such collections of clus-
terings [6]. We can naturally apply the IMF approach in a multi-view ensemble
clustering setting, where C contains multiple clusterings generated on each view.
As we shall see in our evaluation in Section 5, IMF can often take advantage of
the diversity in a multi-view ensemble to produce a superior clustering.



4 Evaluation on Synthetic Multi-View Data

To evaluate the ability of the IMF approach described in Section 3 to handle a
number of key issues that arise in data integration problems, we applied IMF
to cluster multiple different views artificially produced from single-view news
text corpora. Since we can assume that a single news article consists of one or
more segments of text (e.g. one or more consecutive paragraphs), we can con-
struct views containing related segments of text. The overall task then becomes
the identification of an accurate clustering of the entire collection based on the
segment information provided in the different views. Using this synthetically
generated data, we can examine the effectiveness of the proposed approach in
the context of the requirements detailed in Section 3.1.

4.1 Dataset Construction

We make use of the bbc and bbcsport news corpora1 which have been previously
used in document clustering tasks [12], and produce multiple views for documents
based on related text segments. The original bbc corpus contains a total of 2225
documents with 5 annotated topic labels, while the original bbcsport corpus
contains a total of 737 documents also with 5 annotated labels. From each corpus
we constructed new synthetic datasets with 2-4 views as follows:

1. We split each raw document into segments. This was done by separating
the documents into paragraphs, and merging sequences of consecutive para-
graphs until 1-4 segments of text remained, such that each segment was
at least 200 characters long. Each segment is logically associated with the
original document from which it was obtained.

2. The segments for each document were randomly assigned to views, with the
restriction that at most one segment from each document was assigned to
the same view.

3. Standard stemming, stop-word removal and TF-IDF normalization proce-
dures were separately applied to the segments in the individual views.

Details of the six resulting multi-view datasets2 are provided in Table 1. To
quantify algorithm performance, we calculate the normalized mutual informa-
tion (NMI) [6] between clusterings and the set of annotated label information
provided for the original corpora. These annotations are derived from the cate-
gories assigned to the original online news articles. Since NMI evaluates disjoint
clusterings, we convert weighted membership matrices to disjoint clusterings by
assigning each document to the cluster for which it has the highest weight. Note
that in all cases NMI scores are calculated relative to the entire corpus, rather
than relative to the subset present in any individual view.

1 Both available from http://mlg.ucd.ie/datasets/bbc.html
2 Available from http://mlg.ucd.ie/datasets/segment.html



Table 1. Details of the synthetic multi-view text datasets.

Datasets View Documents

bbc-seg2 1 2125
2 2112

bbc-seg3 1 1828
2 1832
3 1845

bbc-seg4 1 1543
2 1524
3 1574
4 1549

Collection View Documents

bbcsport-seg2 1 644
2 637

bbcsport-seg3 1 519
2 531
3 513

bbcsport-seg4 1 400
2 410
3 437
4 432

4.2 “One-Shot” Multi-View Integration

To examine the effectiveness of the IMF approach, we consider the scenario of
combining a set of v clusterings, each coming from a different view. To provide a
set of representative clusterings for our synthetic views, we apply spectral clus-
tering followed by weighted kernel k-means as described in [15]. Since our focus
here is not on the generation of these constituent clusterings, for convenience we
set the number of clusters to the correct number of labeled classes for the asso-
ciated corpora. The representative clusterings also provide a reasonable baseline
comparison. When applying IMF itself, we select a value for the parameter k′

using the procedure proposed in Section 3.3, using a candidate range k′ ∈ [4, 12].

Incomplete views. As indicated by the figures in Table 1, the synthetic view
construction methodology will naturally result in cases where documents will
be represented by segments in some but not all of the views (i.e. the views are
not complete). Therefore we can directly examine the ability of the proposed
algorithm to deal with this scenario. A summary of the results of the “one-
shot” experiments on the six synthetic datasets is given in Table 2. The mean
and standard deviation of the NMI scores for the constituent clusterings are
listed for comparison. In all cases the application of IMF produced integration

Table 2. Accuracy (NMI) of the IMF approach on synthetic multi-view data, using
one clustering per view.

Dataset k′ Base IMF

bbc-seg2 4 0.77 ± 0.05 0.80
bbc-seg3 5 0.71 ± 0.01 0.83
bbc-seg4 5 0.60 ± 0.01 0.83
bbcsport-seg2 4 0.74 ± 0.05 0.80
bbcsport-seg3 10 0.54 ± 0.05 0.62
bbcsport-seg4 6 0.39 ± 0.04 0.56



clusterings that were significantly better than those generated on the individual
views.

Table 2 also shows the number of meta-clusters k′ automatically selected by
the entropy-based criterion (Eqn. 4). While the model selection procedure did
not always exactly attain the “correct” number of clusters (both the bbc and
bbcsport corpora contain 5 annotated topics), this value did appear in the top
three recommended choices for five of the six datasets.

Missing patterns. To examine the behavior of IMF in scenarios were a pattern
is entirely absent from a view, we took the synthetic datasets and removed all
segments relating to a different randomly chosen label from each view (i.e. so
that each view only contains segments pertaining to k′−1 classes). We repeated
this process for 20 runs, applying weighted kernel k-means on this data followed
by IMF integration. For computational reasons, we use the same values of k′

selected in the last set of experiments. Mean and standard deviation of NMI
scores for these experiments are reported in Table 3. Again the IMF approach
performs significantly better than the representative clusterings, and is successful
in combining clusterings where an exact one-to-one mapping between the clusters
in C does not necessarily exist. It is also worth noting that the NMI scores
achieved are very close to those achieved when integrating clusterings generated
on views with all patterns present (Table 2).

Disagreement between views. Next we examined the problem of discord
between connected views. Specifically we considered the scenario where one view
is considerably less informative than the others. In practice we selected one view
at random and permuted 10% to 40% of the non-zero term values for each
document, producing a noisy view on which a clustering was generated with
spectral-initialized kernel k-means. IMF was then applied to integrate the noisy
clustering together with the non-noisy clusterings from the v− 1 other views. In
these experiments we set the value of k′ to the “correct” number of class labels.
We repeated the entire process for 30 runs and averaged the resulting NMI scores.
Mean NMI scores for the base clusterings (both noisy and non-noisy) and the
resulting integrated clusterings are given in Table 4.

Table 3. Mean accuracy (NMI) of the IMF approach on synthetic multi-view data
with missing patterns, using one clustering per view.

Dataset Base IMF

bbc-seg2 0.76 ± 0.02 0.79 ± 0.03
bbc-seg3 0.66 ± 0.01 0.85 ± 0.03
bbc-seg4 0.56 ± 0.02 0.82 ± 0.04
bbcsport-seg2 0.69 ± 0.05 0.78 ± 0.03
bbcsport-seg3 0.51 ± 0.06 0.63 ± 0.04
bbcsport-seg4 0.39 ± 0.04 0.52 ± 0.04



Table 4. Mean accuracy (NMI) of the IMF approach on synthetic data using one
clustering per view, where one of the views contains 10% to 40% noisy term values.

Dataset 10% noise 20% noise 30% noise 40% noise
Base IMF Base IMF Base IMF Base IMF

bbc-seg2 0.79 0.84 0.79 0.83 0.75 0.80 0.72 0.77
bbc-seg3 0.69 0.83 0.67 0.81 0.64 0.78 0.59 0.75
bbc-seg4 0.57 0.81 0.56 0.79 0.54 0.78 0.49 0.72
bbcsport-seg2 0.71 0.81 0.66 0.74 0.65 0.74 0.60 0.66
bbcsport-seg3 0.53 0.65 0.51 0.63 0.47 0.58 0.41 0.47
bbcsport-seg4 0.40 0.53 0.38 0.51 0.35 0.49 0.26 0.35

A key test in this experiment is whether an integrated clustering can improve
on its constituent clusterings in the presence of noisy views, rather than having
performance equivalent to the “weakest link” among the views. As expected we
observe that the meta-clusters produced by IMF remain significantly more accu-
rate than the underlying constituent clusterings. Secondly, comparing the results
to those in Table 2, we see that for 10-20% noise there is little decrease in clus-
tering accuracy. For more extreme levels of noise, the IMF clustering on datasets
derived from the bbc corpus remain reasonably accurate, while we see a greater
effect on the datasets derived from the bbcsport corpus. In general these exper-
iments suggest that the IMF approach is reasonably tolerant to disagreement
between views, and cases where one view is weaker than the others.

5 Evaluation on Real-World Data

In this section we describe an evaluation of the proposed integration approach
performed on a real-world multi-view document clustering task – namely that of
clustering topical news stories where multiple reports of the same news story are
available from different news sources. We constructed a new multi-view dataset3,
referred to as the 3sources collection, from three well-known online news sources:
BBC4, Reuters5, and The Guardian6. This dataset exhibits a number of common
aspects of multi-view problems highlighted previously – notably that certain
stories will not be reported by all three sources (i.e. incomplete views), and the
related issue that sources vary in their coverage of certain topics (i.e.partially
missing patterns).

In total we collected 948 news articles covering 416 distinct news stories from
the period February–April 2009. Of these stories, 169 were reported in all three
sources, 194 in two sources, and 53 appeared in a single news source. Each story
was manually annotated with one or more of the six topical labels: business,

3 Available from http://mlg.ucd.ie/datasets/3sources.html
4 http://news.bbc.co.uk
5 http://reuters.co.uk
6 http://www.guardian.co.uk



Table 5. The distribution of dominant topic labels for stories in the 3sources collection.
The overall total number of stories per label is given, as well as the number of articles
present within each individual view.

Label Overall BBC Guardian Reuters

business 122 87 78 94
entertainment 70 53 41 43
health 57 45 24 27
politics 61 48 40 23
sport 90 81 76 71
technology 67 38 43 36

entertainment, health, politics, sport, technology. These roughly correspond to
the primary section headings used across the three news sources. To facilitate
comparisons using the NMI measure, in our evaluation we consider only the
dominant topic for each news story, yieldings a disjoint set of annotated classes
as shown in Table 5.

5.1 “One-Shot” Multi-View Integration

For our first evaluation on the 3sources data, we consider a “one-shot” integra-
tion process. Once again we generate a representative clustering on each view
using weighted kernel k-means [15], setting the value of k to the number of la-
bels. A value k′ = 7 for the number of meta-clusters was automatically selected
using the entropy criterion described in Section 3.3. It is interesting to note that
the additional cluster reflects the fact the integration procedure identifies two
distinct clusters for “business and finance” – one cluster largely pertaining to
reports on the global economic downturn, the other cluster containing stories
directly related to business and finance, but also containing stories from sport
and entertainment that have a business or financial dimension. The presence
of this latter group reflects the actual overlapping nature of the topics in the
collection. However, as noted earlier we focus on the disjoint labels during our
evaluation to allow comparison with algorithms producing disjoint clusters.

Table 6 shows a comparison of the performance of the proposed approach
to the clusterings produced on documents from the individual news sources.

Table 6. Performance of IMF on the 3sources collection, compared with clusterings
generated on individual views.

Algorithm/View NMI Assigned

Weighted kernel k-means (BBC ) 0.65 85%
Weighted kernel k-means (The Guardian) 0.52 73%
Weighted kernel k-means (Reuters) 0.55 71%

Integration by Matrix Factorization 0.71 100%



IMF out-performs the three weighted kernel clusterings, and the resulting inte-
grated clustering is considerably more informative than those generated on the
Guardian and Reuters views. We observed that including these “weaker” sources
of information does not significantly impact upon the effectiveness of the data
integration process.

5.2 Ensemble Multi-View Integration

In the second evaluation performed on this collection, we consider the multi-view
ensemble clustering problem described in Section 3.4. To generate the individ-
ual ensemble members, we use standard k-means with random initialization and
cosine similarity. The number of base clusters is set to the number of labels, and
the parameter value k′ = 7 determined in Section 5.1 is used for the number of
meta-clusters. As well as examining the performance of IMF, for comparison we
also applied several well-known ensemble clustering algorithms from the litera-
ture: the CSPA co-association clustering approach [6], the HGPA and MCLA
hypergraph-based methods [6], and the correspondence clustering cumulative
voting method described in [9]. In total we conducted 30 runs, each involving
the generation and integration of 100 different base clusterings per view.

Table 7 summarizes the experimental results for the four approaches under
consideration, in terms of average, minimum and maximum NMI scores achieved
over the 30 runs. The range of NMI scores for the complete set of 9000 base
clusterings is also given. On average 76% of the total number of news stories
was assigned in each base clustering, reflecting the incomplete nature of the
views. Even though the information provided by the base clustering was often
of very poorly quality, we see that most of the integration algorithms performed
reasonably well, with the exception of the HGPA procedure. On average the
IMF approach was the most successful of the techniques under consideration,
suggesting that it frequently availed of the information provided by the “weak”
but diverse clusterings generated on the three views.

Table 7. Accuracy (NMI) of IMF on the 3sources collection, compared with four
well-known ensemble clustering algorithms. The NMI scores for the constituent base
clusterings are also listed.

Algorithm Mean Min Max

Base 0.37 0.02 0.66

IMF 0.78 0.70 0.80
CSPA 0.62 0.61 0.64
HGPA 0.47 0.36 0.60
MCLA 0.72 0.65 0.79
Voting 0.74 0.67 0.79
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Fig. 3. Plot of mean clustering accuracy (NMI) scores for IMF compared to popular
ensemble clustering algorithms, for ensembles of varying size generated on the 3sources
collection.

Effect of ensemble size. An important issue in ensemble clustering that is
often neglected is the effect of ensemble size (i.e. the number of base clusterings
in the ensemble) on clustering performance. For larger datasets, even with the
availability of parallel computing resources, the number of clusterings that can
reasonably be generated can often be strictly limited. As the size of the ensem-
ble decreases, the ensemble multi-view clustering task approaches the one-shot
integration task. However we still may face the problem of having access to only
a set of weak or unrepresentative clusterings. Therefore it is desirable to employ
an integration approach that will be effective when given a relatively small set
of potentially weak base clusterings.

To examine this issue, we compare the behavior of the IMF algorithm with
that of the four alternative approaches used above, as the number of ensemble
members increases. Specifically we consider ensemble sizes ∈ [5, 100] of k-means
clusterings generated on the 3sources collection, with an approximately equal
number of clusterings per view. To account for variability in the results we repeat
the process over 30 trials with different sets of base clusterings. As before, a value
of k′ = 7 was used as the number of final clusters. The results of the comparison
are shown in Figure 3. We observe that IMF shows superior clustering accuracy
in comparison to the alternative integration algorithms, particularly for smaller
ensemble sizes – an NMI score of at least 0.70 was generally obtained after 25
clusterings have been added.

6 Conclusion

In this paper we presented a simple but effective approach for performing un-
supervised data integration on two or more connected views. Experiments on
synthetic and real-world multi-view text datasets yielded encouraging results,



both in tasks where a single representative clustering was available for each
view, and in cases where a larger diverse collection of clusterings was available
for integration. In the latter task the proposed IMF approach out-performed
a number of popular ensemble clustering algorithms. An additional aspect of
IMF is that the additive nature of the factorization process provides an aid in
interpreting the output of the integration process.
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