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1.1 Introduction

P. CUNNINGHAM, H. BISCHOF, D. GREENE
The most fundamental distinction in Machine Learning is that between su-

pervised and unsupervised techniques. Supervision invokes the idea of a teacher
who guides the learning process. Typically this guidance comes in the form of
labeled training examples that can be used to build a classification model. This
external guidance is absent in unsupervised learning; thus the process of build-
ing a model from the data is more difficult. Often all that can be done is to
cluster or organise the data in some way.

Unsupervised learning is very important in the processing of multimedia
content, as clustering or partitioning of data in the absence of class labels is
often a requirement. This chapter will present an overview of classic clustering
techniques (k-Means, EM and Hierarchical) and will introduce the modern
clustering techniques such as Kernel k-Means and Spectral Clustering. Given
the popularity of SOMs in the processing of multimedia content, this topic will
also be covered in detail. Because of the unsupervised nature of clustering, the
validation of the resulting partition is a key issue: a comprehensive overview of
cluster validation techniques will also be presented. This chapter will conclude
with a review of unsupervised dimension reduction techniques.

1.2 Basic Clustering Techniques

1.2.1 k-Means Clustering

Partitional clustering methods involve directly decomposing a dataset into
a flat partition consisting of k disjoint clusters, denoted C = {C1, . . . , Ck}.
These methods generally seek to produce a local approximation to a global
objective function, which is identified by iteratively refining an initial solution.
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1. Create an arbitrary initial clustering with centroids {µ1, . . . , µk}.
2. For each object xi ∈ X :

1. Compute ||xi − µc|| for 1 ≤ c ≤ k.
2. Reassign xi to the cluster corresponding to the nearest centroid.

3. Update cluster centroids.
4. Repeat from Step 2 until a termination criterion is satisfied.

Fig. 1.1. Standard batch k-means algorithm.

Standard k-means is the most widely used partitional clustering algorithm.
It employs an iterative relocation scheme to produce a k-way hard clustering
that locally minimises the distortion between the data objects and a set of
k cluster representatives. Each representative, referred to as a centroid, is
computed as the mean vector of all objects assigned to a given cluster. In
the classical version of the algorithm, distortion is measured using Euclidean
distance, so that the goal of the clustering process becomes the minimisation
of the sum-of-squared error (SSE) between the objects and cluster centroids
{µ1, . . . , µk}:

SSE(C) =

k
∑

c=1

∑

xi∈Cc

||xi − µc||
2

where µc =

∑

xi∈Cc
xi

|Cc|
(1.1)

While many variations of the basic algorithm exist, the most frequently ap-
plied version for offline clustering is the batch k-means algorithm, generally
attributed to Forgy [21], which involves a two-step process as shown in Fig-
ure 1.1. In the first step, each object is reassigned to the closest cluster cen-
troid. Once all objects have been processed, the centroid vectors are updated
to reflect the new cluster assignments. The iterative refinement process is re-
peated until a given termination criterion is satisfied. Typically this occurs
when the assignment of objects to clusters no longer changes from one itera-
tion to another. Alternatively, the procedure may be terminated if the change
in the evaluation of Eqn. 1.1 between two successive iterations is less than a
user-defined threshold.

The SSE function (1.1) implicitly assumes that the clusters approximate
a mixture of Gaussians, such that each cluster is spherical in shape and data
objects are largely concentrated near its centroid. Consequently, k-means will
often fail to identify a useful partition in cases where the clusters are non-
spherical or differ significantly in size. The traditional objective for k-means
can also give undue influence to outlying objects. Their effect in centroid con-
struction can lead to vectors that are not representative of the underlying
groups in the data, resulting in highly skewed clusters. Some authors have
proposed the introduction of an “outlier cluster”, which is used to hold ob-
jects that do not fit well in any other cluster [20]. Others have suggested
repeatedly applying the clustering algorithm and removing poorly clustered
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data after each run [27]. However, both approaches require the introduction
of an arbitrary threshold to determine whether an object is far enough from
its current centroid to be deemed an outlier. Another problem occurs when
the iterative refinement process results in the formation of empty clusters.
A common strategy to deal with this is to assign the most outlying object
(i.e. furthest from its current centroid) to the empty cluster. However, if the
problem persists, it is more likely that the fault may lie with the choice of
clustering model, such as the use of an unsuitable value for k.

1.2.2 Fuzzy Clustering

Dunn [17] proposed a generalisation of standard k-means, the Fuzzy c-means
(FCM) algorithm, which allows objects to belong to different clusters to cer-
tain degrees as expressed by probabilistic weights. These weights may be rep-
resented in the form of a n×k matrix V, where Vij ∈ [0, 1] denotes the degree
of membership of the object xi in cluster Cj , and

∑

j Vij = 1. Once again, the
task of clustering is to minimise the distortion between objects and centroids,
which is now measured by the fuzzy criterion function

F (C,V) =

n
∑

i=1

k
∑

j=1

Vij
m ||xi − µj ||

2
(1.2)

where the exponent m > 1 controls the fuzziness of object memberships. In
this algorithm, centroids are computed using:

µj =

∑n
i=1 Vij

mxi
∑n

i=1 Vij
m (1.3)

Another well-known soft partitional clustering technique is the Expecta-
tion Maximisation (EM) algorithm [10]. Unlike the other techniques described
here, this algorithm takes a model-based approach to identifying groups in
data. Formally, EM clustering is based on the assumption that the data ob-
jects are generated using a model θ which consists of a mixture of k under-
lying probability distributions {θ1, . . . , θk}. The task of clustering can then
be viewed as the problem of determining the most likely parameters for the
model, where each component in the mixture represents a cluster. The likeli-
hood of an object xi is given by:

P (xi|θ) =

k
∑

c=1

P (Cc)P (xi|Cc)

In the standard formulation of the algorithm, the k distributions are assumed
to be Gaussians, so that the problem becomes the approximation of the mean
and covariance of each component. In practice, the algorithm begins with an
initial estimate for the model parameters and subsequently applies an itera-
tive optimisation approach that alternates between two steps: firstly identify



4 Pádraig Cunningham

the expected value of the log likelihood with respect to the current parameter
estimates, then find new parameter values to maximise this likelihood. Once
the algorithm has converged to a local solution, each data object is proba-
bilistically assigned to each cluster based on the estimated distributions. As
with standard k-means, the choice of initial clusters can have a considerable
effect on the accuracy of the final solution.

1.2.3 Hierarchical Clustering

Instead of generating a flat partition of data, it may often be useful to con-
struct a hierarchy of concepts by producing a set of nested clusters that may be
arranged to form a tree structure. While partitional clustering methods have
received more attention in recent literature, hierarchical clustering algorithms
represent the traditional choice for performing document clustering, since text
collections often contain broad themes that may be naturally sub-divided into
more specific topics. Hierarchical algorithms are generally organised into two
distinct categories:

Agglomerative: Begin with each object assigned to a singleton cluster. Apply
a bottom-up strategy where, at each step, the most similar pair of clusters
are merged.

Divisive: Begin with a single cluster containing all n objects. Apply a top-
down strategy where, at each step, a chosen cluster is split into two sub-
clusters.

In either case, the resulting hierarchy may be presented visually using a tree-
like structure referred to as a dendrogram, which contains nodes for each
cluster constructed by the clustering algorithm, together with cluster rela-
tions illustrating the merge or split operations that were performed during
the clustering process. Figure 1.2 provides a simple example of an agglom-
erative clustering process applied to a set of five data objects, together with
the corresponding cluster assignments. It is worth noting that, as each merge
operation is performed, the similarity between the chosen pair of cluster de-
creases.

Unlike the requirement in most partitional algorithms to specify a value
for the number of clusters k in advance, hierarchical algorithms support the
construction of a tree from which a user may manually select k by examining
the resulting dendrogram and identifying an appropriate cut-off point [41].
For instance, by cutting the tree in Figure 1.2 at the level indicated, we can
derive a clustering of the data for k = 2 from the two leaf nodes at that level.

Agglomerative Algorithms

Agglomerative hierarchical clustering (AHC) involves the construction of a
tree of clusters from the bottom upwards. A variety of agglomerative algo-
rithms have been proposed, such as BIRCH [55] and CURE [25], which are
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Fig. 1.2. Example dendrogram representing an agglomerative clustering of five data
objects, together with the corresponding cluster memberships.

suitable for specific types of data. However, we focus on the standard formu-
lation that has widely been used in a range of domains, which proceeds as
follows:

1. Assign each object to a singleton clusters.
2. Update the pairwise inter-cluster similarity matrix.
3. Identify and merge the most similar pair of clusters.
4. Repeat from Step 2 until a single cluster remains or a given termination

criterion has been satisfied.

When an estimation for the number of clusters k is given in advance, the
algorithm may be terminated when the required number of leaf nodes remain
in the dendrogram.

A variety of linkage strategies exist for determining which pair of clusters
should be merged from among all possible pairs. While these strategies are
typically expressed in terms of distances, they may be easily adapted to use
similarity values such as those produced by the cosine measure. Given a sym-
metric matrix S ∈ IRn×n, where Sij denotes the similarity between a pair of
objects xi and xj , the most popular linkage strategies are defined as follows:

Single linkage: The most common strategy, also known as the nearest neigh-
bour technique, defines the similarity between two clusters (Ca, Cb) as
the maximum similarity between an object assigned to Ca and an object
assigned to Cb:

sim(Ca, Cb) = max
xi∈Ca,xj∈Cb

Sij

While this approach is widely used, it can often produce clusters of poor
quality as it is subject to the phenomenon of “chaining”, where singletons
are repeatedly merged with an existing cluster, resulting in one large,
elongated cluster with highly dissimilar objects at either end.

Complete linkage: The similarity between two clusters (Ca, Cb) is defined as
the minimum similarity between an object assigned to Ca and an object
assigned to Cb:
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sim(Ca, Cb) = min
xi∈Ca,xj∈Cb

Sij

This strategy tends to favour strongly compact, tightly coupled clusters
and is often highly sensitive to the presence of outliers.

Average linkage: The similarity between a pair of clusters (Ca, Cb) is calcu-
lated as the mean similarity between objects assigned to Ca and objects
assigned to Cb:

sim(Ca, Cb) =

∑

xi∈Ca

∑

xj∈Cb
Sij

|Ca| |Cb|

This strategy is often referred to as unweighted pair group method using
arithmetic averages (UPGMA), since normalising by cluster size has the
effect of giving equal weights to objects that are assigned to clusters of
different sizes.

Clearly, the choice of linkage strategy can significantly affect the structure of
the clusters that are generated by AHC. As a consequence, the prior selection
of a suitable strategy for a given dataset may represent a non-trivial parameter
selection problem. In practice, a user may generate several hierarchies using
different approaches, and manually inspect the results to choose the most
appropriate solution.

Limitations of Agglomerative Algorithms

A substantial drawback of standard agglomerative algorithms is that poor
decisions made early in the clustering process can greatly influence the ac-
curacy of the final solution. Without the use of a global objective function,
many potential mergers at these stages may appear to be equally valid. Once
a merging decision has been made, there exists no facility to rectify an er-
roneous choice at a later stage. On the contrary, the adverse effects of these
decisions are often exaggerated as the clustering process continues. In addi-
tion to deficiencies in clustering accuracy, hierarchical clustering algorithms
are generally considerably more computationally costly than their partitional
counterparts, typically having time complexity O(n3).

Divisive Algorithms

In contrast to agglomerative methods, divisive hierarchical clustering involves
building a cluster tree from the root node downwards.

1. Assign all data objects to a single cluster.
2. Select a cluster to split.
3. Replace the selected cluster with two new sub-clusters.
4. Repeat from Step 2 until k leaf clusters have been generated or a given

termination criterion has been satisfied.
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1. Assign all n objects to a single cluster.
2. Select a cluster Cc to split according to a chosen splitting criterion.
3. Generate τ 2-way partitions of the cluster Cc using randomly initialised k-

means.
4. Replace Cc with the best pair of clusters as determined by a given clustering

criterion.
5. Repeat from Step 2 until k leaf clusters have been generated.

Fig. 1.3. Bisecting k-means (BKM) algorithm.

Several authors have empirically shown divisive algorithms to be superior to
agglomerative techniques on text data [13]. In addition, these algorithms are
often less time consuming than traditional bottom-up clustering. However,
in general, they have been employed less frequently due to the non-trivial
problems of selecting a cluster to split and finding the optimal sub-division of
the chosen cluster.

Bisecting k-means

As a representative example of divisive clustering, we consider the algorithm
proposed by Steinbach et al. [50], which combines aspects of hierarchical and
partitional clustering. Initially, all objects are assigned to a single root cluster.
The algorithm involves repeatedly selecting an existing cluster and splitting
the cluster into two sub-clustering using the generalised k-means algorithm
with cosine similarity. The process is repeated until k clusters have been ob-
tained. To split a cluster, a fixed number of randomly-initialised bisections τ
may be performed, from which the best candidate is selected. This choice is
determined by a cluster evaluation criterion, such as mean document-centroid
distance:

Cen(Cc) =

∑

xi∈Cc
d(xi, µc)

|Cc|
(1.4)

A larger value for τ renders the algorithm less sensitive to the choice of initial
clusters than the partitional algorithms described previously, although it does
increase the computational cost of applying the algorithm. A summary of the
complete procedure is given in Figure 1.3.

Several strategies have been proposed to identify the most appropriate
cluster to split. A näıve approach is to divide the largest cluster into two sub-
clusters at each stage [50]. However, this may be inappropriate when working
with text corpora, which frequently contain “unbalanced” clusters that differ
in their relative proportions. An alternative strategy is to split the cluster
with maximal distortion [13]. Given k potential candidates for splitting, Zhao
& Karypis [57] proposed evaluating all possible candidates and selecting the
split that leads to the best subsequent partition containing k + 1 clusters.
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However, this approach requires significantly more computational time than
the standard formulation of the algorithm.

1.3 Modern Clustering Techniques

1.3.1 Kernel Clustering

Kernel methods involve the transformation of a dataset to a new, possibly
high-dimensional space where non-linear relationships between objects may
be more easily identified. Rather than explicitly computing the transformed
representation φ(x) of each data object x, the application of the “kernel trick”
[1] allows us to consider the affinity between a pair of objects (xi,xj) using a
kernel function κ, which is defined in terms of the dot product:

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (1.5)

In practice, the function κ is represented by an n×n symmetric, positive semi-
definite kernel matrix (or Gram matrix) K, such that Kij = κ(xi, xj). By re-
formulating algorithms using only dot products and subsequently replacing
these with affinity values from K, we can efficiently apply learning algorithms
in the new kernel space.

Another significant advantage of kernel methods is their modularity, where
every method is composed of two decoupled components: a generic learning
algorithm, and a problem-specific kernel function. Consequently, it is possible
to develop algorithms that can readily be deployed in a wide range of domains
without requiring any customisation. Novel kernels can also be constructed in
a modular fashion by chaining together multiple existing functions together.

The main focus of research in this area has been on the development of
techniques for supervised tasks, notably the well-known support vector ma-
chine (SVM) classifier [8]. However, kernel methods have also been shown to
be effective in unsupervised problems [12]. We now describe several algorithms
and kernel functions that are relevant in this context.

Kernel k-means

A variety of popular clustering techniques have been re-formulated for use
in a kernel-induced space, including the standard k-means algorithm. To de-
scribe the algorithm, we firstly observe that, using the notation given above,
the squared Euclidean distance between a pair of objects in the kernel space
represented by a matrix K can be expressed as:

||φ(xi) − φ(xj)||
2 = Kii + Kjj − 2Kij (1.6)

This may be used as a starting point for the identification of cluster structures.
Formally, given a set of objects {x1, . . . , xn}, the kernel k-means algorithm
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1. Select k arbitrary initial clusters {C1, . . . , Ck}.
2. For each object xi ∈ X and centroid µc, compute the distance:

d(xi, µc) = Kii +

P

xj ,xl∈Cc
Kjl

|Cc|
2

−
2

P

xj∈Cc
Kij

|Cc|

3. Assign each xi to cluster corresponding to nearest centroid.
4. Repeat from Step 2 until termination criterion is satisfied.

Fig. 1.4. Kernel k-means (KKM) algorithm.

[47] seeks to minimise the distortion between the objects and the “pseudo-
centroids” {µ1, . . . , µk} in the new space:

k
∑

c=1

∑

xi∈Cc

||φ(xi) − µc||
2

where µc =

∑

xi∈Cc
φ(xi)

|Cc|
(1.7)

Note that this expression is analogous to the SSE objective (1.1) used in stan-
dard k-means. However, rather than explicitly constructing centroid vectors
in the kernel space, distances are computed using dot products only. From
Eqn. 1.6, we can formulate squared object-centroid distance by the expres-
sion:

||φ(xi) − µc||
2 = Kii +

∑

xj,xl∈Cc
Kjl

|Cc|
2 −

2
∑

xj∈Cc
Kij

|Cc|
(1.8)

The first term above may be excluded as it remains constant; the second is
a common term representing the self-similarity of the centroid µc, which only
needs to be calculated once for each cluster; the third term represents the
affinity between xi and the centroid of the cluster Cc.

This kernelised algorithm has a significant advantage over standard k-
means in the sense that, given an appropriate kernel function, it can be used
to identify structures that are not necessarily spherical or convex. In addi-
tion, once we have constructed a single matrix K, multiple partitions may be
subsequently generated without referring back to the original feature space.

1.3.2 Spectral Clustering

Motivated by work in graph theory, unsupervised feature extraction methods
have been developed that employ well-known techniques from linear algebra to
analyse the spectral properties of a graph representing a dataset. In practice,
this involves constructing a reduced dimensional space from the eigenvalue
decomposition (EVD) of a matrix form of the graph. Existing clustering al-
gorithms may subsequently be applied in the reduced space to uncover the
underlying classes in the data. Spectral clustering methods have been widely
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used due to their efficiency and applicability in a variety of tasks, including im-
age segmentation [49], gene expression analysis [34] and document clustering
[11].

Graph Partitioning

A common way of expressing the relations between pairs of data objects is
to use a symmetric similarity or affinity matrix S, where Sij denotes the
association between the objects xi and xj . The task of producing a disjoint
clustering may then be modelled as a graph partitioning problem, where S

becomes the adjacency matrix for a weighted undirected graph G(V , E). In
this model, the set of vertices V represents the data objects and the set of
edges E represents pairwise similarities between objects. Using this graph-
theoretic formulation, clustering becomes the problem of finding the partition
{V1, . . . , Vk} of G that optimises a given cost criterion.

A variety of criteria have been used in graph partitioning, which are also
relevant to the theoretical foundations of spectral clustering. The simplest of
these, the minimum cut criterion, measures the weight of the edges crossing
the partition. Formally, the optimisation of the criterion involves locating a
bi-partition (C1, C2) of the graph vertices such that C1 ∪ C2 = V , which
minimises the sum of the weights of edges connecting the two clusters, as
denoted by:

s(C1, C2) =
∑

i∈C1,j∈C2

Sij (1.9)

This expression shows that the weight of the cut is directly proportional to
the number of edges that join the two sub-graphs. Consequently, the criterion
favours small groups of isolated vertices. This makes it sensitive to outliers
and often leads to highly unbalanced clusterings.

A more robust measure for assessing bi-partitions, the normalised cut cri-
terion, was proposed in [48]. This measures the degree of association between
a cluster and the remaining vertices, relative to the total association within
that cluster:

Ncut(C1, C2) =
s(C1, C2)

s(C1,V)
+

s(C1, C2)

s(C2,V)
(1.10)

The normalisation given in the denominator makes the criterion less sensitive
to the presence of outlying objects. Yu & Shi [54] subsequently generalised
this objective for multi-class partitioning:

KNcut(C) =

k
∑

i=1

s(Ci,V\Ci)

s(Ci,V)
(1.11)

Spectral Bi-partitioning

Unfortunately, the problem of finding an optimal partition according to the
criteria described in the previous section is NP-complete. While traditional
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techniques such as the Kernighan-Lin algorithm [33] have been used to pro-
duce local approximations, such methods often have drawbacks in terms of
partition accuracy. Rather than directly attempting to optimise a given cri-
terion, many authors have sought to transform the optimisation task into a
generalised eigenvalue problem. Given a symmetric adjacency matrix S, this
involves computing its eigenvalue decomposition:

S = VΛV
T

where the diagonal entries of Λ represent the set of eigenvalues and the
columns of V are a corresponding set of orthogonal eigenvectors. Unlike lo-
cal partitioning methods, analysing the spectrum of S allows grouping to be
performed based on global information describing the structure of the corre-
sponding graph.

Early work in this area [14, 19] indicated the existence of a connection be-
tween the problem of finding vertex separators for a graph and the eigenvalue
decomposition of its corresponding Laplacian matrix L = D − S, where D

denotes a diagonal degree matrix such that Dii =
∑n

j=1 Sij . The Laplacian
of a graph G containing n vertices is symmetric positive semi-definite, with
non-negative eigenvalues 0 = λ1 < λ2 < · · · ≤ λn and corresponding eigenvec-
tors {v1, . . . ,vn}. The most important common observation made by these
authors was that the spectrum of a graph provides useful structural informa-
tion that may indicate how best to partition its vertices. The use of spectral
partitioning was popularised by the proposal of a formal technique by Pothen
et al. [43]. Following from the discussion given in [26], a bi-partition (C1, C2)
of G may be represented by a membership indicator vector q = {q1, . . . , qn}
such that:

qi =

{

+1 if i ∈ C1

−1 if i ∈ C2

If the adjacency matrix S has a block-diagonal structure (i.e. the rows can be
reorganised by cluster membership to form a checker-board pattern), we can
optimise the minimum cut by finding a clustering that minimises the sum of
the weights in the off-diagonal blocks. The problem can be formulated as the
search for a vector q that minimises:

argmin
q

n
∑

i,j=1

Sij(qi − qj)
2 such that

∑

i=1

q2
i = 1

This objective can also be expressed in quadratic form using the Laplacian L:

argmin
q

qLq

Rather than solving this as a complex combinatorial problem, a solution may
be found by relaxing the requirement on q to contain discrete values, so that
the assignment of each vertex is continuous, with membership weights taking
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real values in the range [−1, 1]. The partition approximating the minimal cut
can then be found by examining the eigenvectors of L. Specifically, the relaxed
membership weights are calculated as the components of the eigenvector v2

corresponding to the second smallest eigenvalue λ2 of the Laplacian (i.e. the
first non-trivial eigenvector), which is often referred to as the Fiedler vector.

A variety of justifications for partitioning based on v2 are given in the liter-
ature. Fiedler [19] showed the association between its corresponding eigenvalue
λ2 and the edge connectivity of a graph, while Pothen et al. [43] demonstrated
a relationship between the edge separator induced by v2 and the isoperimetric
number of a graph, which represents the value of the smallest possible edge
cut over all candidate separators. The latter has motivated several popular
spectral bi-partitioning algorithms. In these, the vertices are sorted according
to the values in v2, and those vertices with values below a chosen threshold,
such as 0, the mean value or the median value, are assigned to one cluster,
with the remaining vertices assigned to the second cluster.

Spectral methods have also been developed to optimise other, more robust
graph partitioning criteria. Notably, in [48] a spectral approach was proposed
to find a bisection that minimises the normalised cut criterion (1.10). A good
approximation may be identified in a manner similar to that described pre-
viously, but rather using the spectrum of the normalised Laplacian matrix
of the graph, which is defined as Ln = D− 1

2 (D − S)D− 1

2 . Two clusters are
formed from the normalised Fiedler vector by sorting the entries and choos-
ing a splitting point along the vector which results in the minimal value for
Eqn. 1.10.

K-Way Spectral Clustering

In most cases, we will typically want to partition a dataset into more than
two clusters. Two general approaches have been proposed in the literature to
extend spectral bi-partitioning to the problem of k-way clustering. The first
involves recursively applying spectral bi-partitioning to hierarchically divide
each resulting sub-graph until k clusters have been recovered [48]. However, if
k is not a power of 2, it is unclear as to how to choose which segments should
be sub-divided.

A more effective approach involves directly producing a k-way partition by
constructing an embedding from multiple eigenvectors of the affinity matrix.
However, rather than using those vectors corresponding to the smallest eigen-
values, clustering may be performed using the eigenvectors associated with the
largest eigenvalues, which also contain structural information. A formal justi-
fication for the benefits of clustering in the reduced space formed from these
vectors was given in the polarisation theorem proposed in [6]. This theorem
asserts that, as an affinity matrix S is projected onto smaller subsets of succes-
sive leading eigenvectors, the angles between highly similar objects are least
distorted, while the angles between dissimilar objects tend to greatly increase.
Consequently, by magnifying the similarities between objects that belong to
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the same natural class and attenuating the associations between objects be-
longing to different classes, the clustering problem will often become easier to
solve.

K-way spectral clustering techniques generally consist of three principal
phases: preprocessing, spectral mapping and post-processing [53]. We now
describe each of these phases individually and summarise the most popular
approaches that have been used to implement them.

Preprocessing: Initially, an affinity matrix S is constructed from the origi-
nal data using an appropriate metric, such as the Gaussian kernel func-
tion for image data or cosine similarity for text documents. As with bi-
partitioning, various normalisation techniques may be applied to S to sup-
port the optimisation of different partitioning criteria. Most commonly, an
approximation to the k-way normalised cut (1.11) has been used, which is
found by computing the truncated EVD of the normalised affinity matrix
given by:

Sn = D− 1

2 SD− 1

2 (1.12)

When using this objective, some authors have observed that removing the
influence of the diagonal values by setting Sii = 0 prior to decomposition
results in improved accuracy [42].

Spectral mapping: The second phase of the spectral clustering process in-
volves computing the eigenvalue decomposition of the normalised affinity
matrix. In [42] it was shown that, when partitioning data into k clusters,
the use of eigenvectors corresponding to the k largest eigenvalues affords
the best discriminating power. By stacking these vectors in columns to
form Y ∈ IRn×k, a reduced-dimensional representation is produced for
the original n objects.

Post-processing: The columns of a k-dimensional spectral embedding Y can
be viewed as a set of k semantic variables. However, since these vari-
ables may take negative values, they are not immediately interpretable as
clusters. In simple cases where the affinity matrix is approximately block
diagonal, it may be possible to identify a partition by inspecting the val-
ues in Y. However, for real-world data such as text corpora some form of
post-processing will be required to extract the final cluster assignments.
A popular approach is to treat the rows {y1, . . . , yk} as points in a geomet-
ric space IRk and apply a partitional algorithm, such as standard k-means,
to cluster these points. A final clustering of the original dataset may be
derived by simply assigning the object xi to the cluster Cj which contains
the corresponding embedded point yj . It has been shown the quality of
this partition may often be improved by normalising the rows of Y to
L2 unit length prior to clustering [42]. Several other authors have focused
on directly decomposing the selected eigenvectors into a set of k clusters
without the need for the subsequent application of a clustering algorithm
[54].
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1. Construct an affinity matrix S ∈ IRn×n on the original data X , and set
Sii = 0.

2. Form the normalised affinity matrix:

Sn = D
−

1

2 SD
−

1

2

3. Decompose Sn and construct an embedding Y ∈ IRn×k, such that the
columns are given by the eigenvectors corresponding to the k largest eigen-
values.

4. Normalise the rows of Y to L2 unit length.
5. Apply standard k-means to the rows of Y to generate a k-way clustering C.
6. Produce a clustering of X by assigning each object xi to the j-th cluster if

yi ∈ Cj .

Fig. 1.5. Ng-Jordan-Weiss (NJW) spectral clustering algorithm.

To illustrate how the three phases fit together, a summary of a popular repre-
sentative algorithm, Ng-Jordan-Weiss (NJW) clustering [42], is given in Fig-
ure 1.5.

Bipartite Spectral Co-clustering

The techniques described previously in this section focus solely on the problem
of grouping the objects in a dataset. However, in certain situations it may be
useful to perform co-clustering, where both objects and features are assigned
to groups simultaneously. Such techniques are related to the principle of the
duality of clustering objects and features, which states that a clustering of
objects induces a clustering of features while a clustering of features also
induces a clustering of objects [11]. The co-clustering problem may be viewed
as the task of partitioning a weighted bipartite graph. Formally, we build a
graph G(V , E) such that V = VX∪VT , where VX is a set of vertices representing
the n objects and VT is a set of vertices representing the m features. Feature
values are given by the weights on the edges (i, j) in E . We can conveniently
represent such a graph using a feature-object matrix A.

While the methods in the previous section involve analysing the eigende-
composition of an affinity matrix, for the bipartite case several authors have
suggested the use of the related singular value decomposition (SVD), which
may be applied to rectangular matrices. Formally, this involves decomposing
a matrix A ∈ IRm×n into the product of three factors:

A = UΣV
T

(1.13)

The columns of the matrix U ∈ IRm×m are referred to as the left singular
vectors, the rows of V ∈ IRn×n are the right singular vectors, and the diagonal
entries of Σ ∈ IRm×n are called the singular values of A. Note that the left
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singular vectors are equivalent to the eigenvectors of AA
T

, the right singular

vectors are the eigenvectors of A
T

A and their identical sets of eigenvalues are
given by the diagonal of Σ2.

Dhillon [11] suggested that an approximation for the optimal normalised
cut of a bipartite graph represented by a matrix A may be obtained by
analysing the l = log2 k leading singular vectors of the degree-normalised
matrix given by:

An = D1
− 1

2 AD2
− 1

2 (1.14)

where D1 and D2 are diagonal matrices such that

[D1]ii =

n
∑

j=1

Aij , [D2]jj =

m
∑

i=1

Aij (1.15)

If A is a feature-object matrix, the rows of the left truncated vectors Ul

represent a l-dimensional embedding of the features, while the columns of the
right truncated vectors Vl represent an embedding of the data objects. By
selecting the leading vectors of the spectral decomposition, we can produce a
reduced-dimensional space that amplifies the natural structures in the data.
In this case, a unified embedding Z ∈ IR(m+n)×l is constructed by normalising
and arranging the truncated factors as follows:

Z =

[

D1
−1/2Ul

D2
−1/2Vl

]

A partitional clustering algorithm, such as k-means, is then applied in the ge-
ometric space Z to produce a simultaneous k-way partitioning of both objects
and features.

1.4 Self Organising Maps

1.5 Cluster Validation

We now consider the task of assessing the validity of the output of a clus-
tering algorithm, which represents a fundamental problem in unsupervised
learning. Unlike in classification tasks, cluster analysis procedures will gener-
ally be unable to refer to predefined class labels when employed in real-world
applications. Consequently, there is no clear definition of what constitutes a
correct clustering for a given dataset. As a result, it may be difficult to dis-
tinguish between a solution consisting of groups that accurately reflect the
underlying patterns in the data and one that does not provide the user with
any helpful insight. While it may be possible in some cases for a domain expert
to manually evaluate a clustering solution, this will be unfeasible for larger
datasets and may introduce an element of human bias.
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In contrast, cluster validation methods automatically produce a quantita-
tive evaluation, which can be highly useful both in the exploratory analysis of
data and in the design of new clustering algorithms. The validation problem
can be viewed as comprising of several different tasks:

Examining cluster tendency: In certain applications, a crucial initial step in
the cluster analysis process is to determine whether any significant struc-
tures exist in a dataset at all. However, in the document clustering litera-
ture it has been common to assume that text corpora will contain at least
two identifiable topics.

Model selection: This task relates to the identification of an appropriate clus-
tering algorithm and a corresponding set of parameter values. In the
context of document clustering, a particularly important model selection
problem is that of estimating the optimal number of clusters in a corpus,
denoted by k̂. For certain datasets, there may be several reasonable values
for k̂.

Relative comparison: It is often necessary to directly compare two or more
candidate clusterings of the same dataset. This comparison may be per-
formed as part of model selection, or may be used to evaluate the perfor-
mance of a newly proposed clustering algorithm, relative to that afforded
by existing algorithms.

Stability analysis: When a clustering solution is generated using an algorithm
that contains a stochastic element or requires the selection of key param-
eter values, it is important to consider whether the solution represents a
“definitive” solution that may easily be replicated. This can typically be
determined by assessing the level of pairwise agreement between two or
more clusterings of the same data.

A wide variety of validation methods have been proposed in the cluster analy-
sis literature, which pertain to one or more of the above tasks. In the remainder
of this chapter we review a range of methods, both classical and contempo-
rary, many of which are relevant for document clustering. These methods are
often organised into three distinct categories:

1. Internal validation: Compare clustering solutions based on the goodness
of fit between each clustering and the raw data on which the solutions
were generated.

2. External validation: Assess the agreement between the output of a clus-
tering algorithm and a predefined reference partition that is unavailable
during the clustering process.

3. Stability-based validation: Evaluate the suitability of a given clustering
model by examining the consistency of solutions generated by the model
over multiple trials.
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1.5.1 Internal Validation

Internal validation methods are designed to provide a means of systematically
assessing the quality of a clustering based on some evaluation function, which
usually takes the form of an index measuring the goodness of fit between the
clustering and the data on which it was generated. This evaluation is based
solely on aspects of the features and metrics used during the clustering process,
without considering any additional information or external supervision. In
certain cases, these indices can also be used to provide an objective function for
clustering, although many are intractable to optimise directly. Consequently,
internal validation techniques are generally applied after the completion of
the clustering procedure.

Model selection in areas such as bioinformatics has frequently been per-
formed by using internal techniques [5]. Specifically, it is common to generate
multiple clusterings of the data for a range of reasonable parameter values.
For knowledge discovery tasks, it may be necessary to repeatedly adjust pa-
rameter values and reapply the clustering algorithm until a useful solution is
obtained. To guide this process, one or more internal validation indices may
be employed to assess the quality of different solutions. A set of suitable pa-
rameter values may be identified by locating a solution which optimises these
indices.

It is common for internal validation indices to measure goodness-of-fit by
examining aspects of a clustering solution such as intra-cluster compactness
and inter-cluster separation. To illustrate this idea, we consider the simple
two-dimensional data depicted in Figure 1.6, for which we wish to choose
a suitable value for the number of clusters k. An internal index is likely to
favour the first clustering in Figure 6(a), which consists of three clusters that
are relatively compact and well-separated. However, the partition shown in
Figure 6(b) is clearly a poor fit for the data, as two of the clusters are not
well-separated. Therefore, evaluating the second partition with the same index
should result in a relatively poor score. From this, we can conclude that k = 3
is likely to represent a more suitable choice for the data.

We now discuss a number of internal indices that have been traditionally
used to evaluate hard clusterings.

Calinski-Harabasz index

Motivated by the clustering objectives used in well-known partitional algo-
rithms, a number of internal indices have been proposed which assess cluster
quality by considering the squared distances between data objects and cluster
representatives. Formally, the within-cluster sum of squares is the total of the
squared distances between each object xi and the centroid of the cluster Cc

to which it has been assigned:

W (C) =

k
∑

c=1

∑

xi∈Cc

d(xi, µc)
2



18 Pádraig Cunningham

(a) Well-separated clusters (k = 3) (b) Poorly-separated clusters (k = 4)

Fig. 1.6. Clusterings on simple dataset containing three well-separated groups.

When employing Euclidean distance, this is equivalent to the SSE function
(1.1) used in the standard k-means algorithm. The between-cluster sum of
squares is the total of the squares of the distances between the each cluster
centroid and the centroid of the entire dataset, denoted µ̂:

B(C) =

k
∑

c=1

|Cc| d(µc, µ̂)2 where µ̂ =
1

n

n
∑

i=1

xi

The statistics W (C) and B(C) have been combined in a number ways by
different authors for the purposes of validation. A representative example, the
Calinski-Harabasz (CH) index [7], involves computing the normalised ratio of
within-cluster relative to inter-cluster scatter:

CH(C) =
B(C)/(k − 1)

W (C)/(n − k)
(1.16)

A larger value is indicative of greater internal cohesion and a large degree of
separation between the clusters in C. This index has been frequently used as
a means of automatically selecting the number of cluster in data, particularly
in conjunction with agglomerative hierarchical clustering methods.

Generalised Dunn’s index

Many popular cluster validation indices are based on the assumption that
a correct clustering will minimise intra-cluster dissimilarity, while simulta-
neously maximising inter-cluster dissimilarity. A prototypical index is that
proposed in [18], which was designed to reward “compact and well separated
clusters”. This index was generalised in [4] to support the use of arbitrary
cluster evaluation criteria. Formally, for a disjoint k-way clustering, we let
∆ : C → IR denote a function that evaluates the intra-cluster dissimilarity
or diameter of a cluster in C, and let δ : C × C → IR denote a function that
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evaluates the inter-cluster dissimilarity between a pair of clusters. An overall
evaluation for C is calculated using the expression:

D(C) = min
1≤i≤k

{

min
1≤j≤k,i6=j

{

δ(Ci, Cj)

max1≤l≤k {∆(Cl)}

}}

(1.17)

A larger value for D(C) indicates that the clustering C consists of compact
clusters which are well-separated.

To evaluate clusters, the original formulation of Dunn’s index made use
of complete intra-cluster diameter and single-linkage inter-cluster distance, as
defined by:

∆1(Ci) = max
x∈Ci,y∈Ci

{d(x, y)} δ1(Ci, Cj) = min
x∈Ci,y∈Cj

{d(x, y)} (1.18)

Since both functions only make use of a single distance value corresponding to
the most extreme case, this formulation is highly sensitive to the presence of
outliers. An alternative approach is to include the contribution of all objects
in a cluster by considering object-centroid scatter and measuring inter-cluster
dissimilarity in terms of the distance between centroids:

∆2(Ci) = 2

(

∑

x∈Ci
d(x, µi)

|Ci|

)

δ2(Ci, Cj) = d(µi, µj) (1.19)

Bezdek & Pal [4] suggested that, by considering average object-centroid dis-
tance together with average-linkage inter-cluster distance, more robust cluster
evaluations can be produced:

∆3(Ci) = 2

(

∑

x∈Ci
d(x, µi)

|Ci|

)

δ3(Ci, Cj) =

∑

x∈Ci,y∈Cj
d(x, y)

|Ci| |Cj |
(1.20)

It should be noted that evaluation criteria based on object-centroid distances
will often exhibit an unfair bias toward spherical clusters in the same way
as the standard k-means algorithm, leading to the production of misleading
results on data where the underlying groups are elongated or non-convex in
structure.

Davies-Bouldin index

A related internal validation technique was proposed in [9] that considers the
ratio of intra-cluster scatter to inter-cluster separability across all k groups in
a clustering. Formally, the DB index is defined as a function of the proximity
between each cluster and its nearest neighbour:

DB(C) =
1

k

k
∑

i=1

max
i6=j

{

∆(Ci) + ∆(Cj)

δ(Ci, Cj)

}

(1.21)
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This value will decrease as clusters become more compact and more dis-
tinctly separated, making smaller values for this index desirable. As with
Dunn’s index, arbitrary cluster evaluation functions can potentially be used in
Eqn. 1.21. However, typically the centroid-based metrics defined in Eqn. 1.19
are employed to assess scatter and inter-cluster dissimilarity. A significant
disadvantage of the DB index is that it does not have a fixed range, with an
output value only constrained to be non-negative, making interpretation prob-
lematic. In addition, empirical analysis has shown that, when attempting to
select k, this index tends to underestimate the number of groups, particularly
for weakly clustered data [15].

C-index

Hubert & Levin [29] proposed a cluster validation measure that evaluates
the homogeneity of a set of clusters by comparing the weight of the intra-
cluster distances induced to a similar proportion of inter-cluster distances.
Formally, let dw denote the sum of all lw intra-cluster distances induced by a
clustering C. Furthermore, let dmin denote the sum of the lw smallest and dmax

denote the sum of the lw largest distances across all pairs of objects in the
dataset. Having examined all pairwise distances, the C-index for a clustering
is calculated as the ratio:

HL(C) =
dw − dmin

dmax − dmin
(1.22)

A small value for this ratio is generally indicative of a more cohesive clustering.

Silhouette index

Rousseeuw [46] suggested computing a “silhouette value” for each object in
a clustering, which measures the degree to which the object belongs to its
current cluster relative to the other k− 1 clusters. Formally, for each xi ∈ Ca,
let a(i) denote the average distance between the object and all other objects
in Ca, and let b(i) denote the average distance between xi and all objects in
the nearest competing cluster Cb:

a(i) =
1

|Ca|

∑

j∈Ca,i6=j

d(i, j) b(i) =
1

|Cb|

∑

j∈Cb

d(i, j)

The silhouette width for xi is then computed using the expression:

sil(i) =
b(i) − a(i)

max {a(i), b(i)}
(1.23)

This produces an evaluation in the range [−1, 1], indicating how well the
object fits in its own cluster when compared to how well it would fit if moved
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to another cluster. A value close to 1 indicates that xi is likely to have been
assigned to the appropriate cluster, a silhouette closer to 0 suggests that
xi could also have been assigned to the nearest alternative cluster, while a
negative value suggests that xi is likely to have been incorrectly assigned.
The latter case can also be interpreted to mean that the object is an outlier.
An overall evaluation for a k-way clustering, the average silhouette width, can
be computed by taking the mean silhouette of all n participating objects:

ASW (C) =
1

n

n
∑

i=1

sil(i) (1.24)

A higher value for this expression signifies a superior clustering of the data.

1.5.2 External Validation

A significant disadvantage of internal techniques is that useful comparisons
may only be made between clusterings that are generated using the same
data model and similarity metric [23]. We have also seen that many well-
known internal indices make assumptions about the structure of the clusters
in data, so that they favour clusters with certain geometric properties.

An alternative approach to validation is to apply the algorithm to a dataset
for which a reference partition or “ground truth” is available, typically in the
form of predefined class labels. External validation indices make use of this
information, unavailable to the clustering algorithm itself, to quantify the
level of agreement between the algorithm’s output and the set of k′ natural
classes C′ = {C′

1, . . . , C
′
k′} in a reference partition. Since these indices gen-

erally only consider the final partition of the data, they are independent of
the representation and metrics used during the clustering procedure. In this
section we provide a comprehensive review of external validation indices that
are suitable for evaluating disjoint clusterings. When describing these indices,
we let n′

i denote the number of objects in class C′
i, let nj denote the number

of objects in cluster Cj , and let nij denote the number of objects common to
both the class C′

i and cluster Cj

It should be acknowledged that the main role for external measures in
machine learning has been in the development and comparative evaluation of
clustering algorithms. In the literature it is common for authors to select a
fixed value for the number of clusters k, with one or more external indices be-
ing subsequently used to gauge the relative merit of the clustering techniques
under consideration. In contrast to the common usage of internal indices, it is
generally inappropriate to use external criteria to directly select parameters
such as k, as this form of a priori information is generally inaccessible to the
learning algorithm in real applications.

We now provide a review of common external validation indices that may
be used to evaluate disjoint clusterings.



22 Pádraig Cunningham

Set Matching Measures

A simple external validation approach is to identify a match between each
cluster and a corresponding natural class in the reference partition. Once
a mapping has been found, evaluations can be readily computed based on
the k′ × k confusion matrix N, where the entry Nij denotes the size of the
intersection |C′

i ∩ Cj | between the class C′
i and cluster Cj .

Motivated by conventional evaluation techniques in supervised learning,
several authors have suggested assessing the quality of a partition by assigning
a unique dominant natural class to each cluster and counting the number
of objects that have been assigned to the correct cluster [40]. To do this, a
heuristic correspondence procedure is applied, which first identifies the largest
intersection Nij , resulting in a match between C′

i and Cj . The next match is
chosen based on the highest value Nij from the remaining pairs, with the
procedure continuing until min(k′, k) matches have been found. Note that no
class may be matched to more than one cluster. The classification accuracy
for the clustering C is then calculated using the expression

H(C′, C) =
1

n

∑

j′=match(j)

Njj′ (1.25)

where match(j) denotes the index of the class selected as a match for the
cluster Cj .

Zhao & Karypis [56] suggested measuring the extent to which each cluster
contains objects from a single dominant natural class. The purity of a clus-
ter Cj is defined as the fraction of objects in the cluster that belong to the
dominant class contained within that cluster:

P (C′
i, Cj) =

1

nj
max

i
{Nij} (1.26)

Unlike the classification accuracy measure, purity allows multiple clusters to
be matched to the same dominant class. The overall purity of a clustering is
defined as the sum of the individual cluster purities, weighted by the size of
each cluster:

P (C′, C) =

k
∑

j=1

nj

n
P (C′, Cj) (1.27)

This measure provides a näıve estimate of partition quality, where larger pu-
rity values are intended to indicate a better clustering. However, the index
favours small clusters, with the degenerate case of a singleton cluster result-
ing in a maximal cluster purity score [51].

The F-Measure [37] is based on the recall and precision criteria that are
commonly used in information retrieval tasks. Each cluster is viewed as the
result of a query operation, and each natural class is viewed as the target
set of documents for the query. In the ideal case, each cluster will directly
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correspond to a natural class. Using our notation, precision and recall for a
class C′

i and cluster Cj are defined respectively as:

p(Cj , C
′
i) =

Nij

nj
r(Cj , C

′
i) =

Nij

n′
i

High precision implies that most objects in a given cluster belong to the same
class, while high recall suggests that most objects from a single class were
assigned to the same cluster. The F-measure for a pair (C′

i, Cj) is given by
the harmonic mean of their precision and recall, calculated as:

Fij =
2 · rij · pij

pij + rij
(1.28)

For each class C′
i, a unique matching cluster Cj is selected so as to maximise

the value Fij . An overall score for a clustering C is obtained by taking the
weighted average of the maximum F-values across all k′ classes:

F (C′, C) =

k′

∑

i=1

n′
i

n
max

j
{Fij} (1.29)

Ghosh [23] notes that this measure tends to favour lower values of k, resulting
in coarser clusterings.

Pairwise Co-assignment Measures

An alternative approach to external validation is to count the pairs of objects
for which the clusters and natural classes agree on their co-assignment. By
considering all pairs, we can calculate statistics for each of four possible cases:

• a = number of pairs in the same class in C′ and assigned to the same
cluster in C.

• b = number of pairs in the same class in C′, but in different clusters in C.
• c = number of pairs assigned to the same cluster in C, but in different

classes in C′.
• d = number of pairs belonging to different classes in C′ and assigned to

different clusters in C.

Note that a + d corresponds to the number of agreements between C′ and C,

b + c corresponds to the disagreements, and M = a + b + c + d = n(n−1)
2 is

the total number of unique pairs.
The Jaccard coefficient [30] has been commonly applied to assess the sim-

ilarity between binary sets. It is also possible for this measure to be used in
the context of external validation, where the level of agreement of between
the disjoint partitions C′ and C is given by normalising the number of positive
agreements:
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J(C′, C) =
a

a + b + c
(1.30)

This index produces a result in the range [0, 1], where a value of 1 indicates
that C′ and C are identical. It was observed in [15] that Eqn. 1.30 tends to
produce high values for random clusterings and favours lower values of k.

The Rand index [44] is similar to the above measure, but also considers
cases where both partitions assign a pair of objects to different groups. This
results in an evaluation in the range [0, 1] based on the fraction of pairs for
which there is an agreement:

R(C′, C) =
a + d

a + b + c + d
(1.31)

To eliminate biases related to different cluster size distributions and the num-
ber of clusters, Hubert & Arabie [28] proposed the corrected Rand index, which
is computed as follows:

CR(C′, C) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
(1.32)

After applying this correction, a value of 1 indicates a perfect agreement
between the two groupings, while a value of 0 indicates that a clustering is no
better than a random partitioning of the data.

Another popular index for assessing the similarity between partitions was
proposed in [22], which is based on the calculation of two probability scores:
the probability that a pair of objects are assigned to the same cluster given
that they belong to the same class, and the probability that a pair objects
belong to the same class given that they were assigned to the same cluster. A
value for the Fowlkes-Mallows index (FM) is found by taking the geometric
mean of these probabilities:

FM(C′, C) =

√

(

a

a + b

) (

a

a + c

)

(1.33)

A value close to 1 indicates that the clusters in C provide a good estimate for
the reference partition.

Information Theoretic Measures

Recent research relating to cluster validation has focused on concepts from in-
formation theory, which consider the uncertainty of predicting a set of natural
classes based on the information provided by a clustering of the same data.
We now describe two indices, based on these concepts, which have frequently
been applied to evaluate clusterings of text data.

Steinbach et al. [50] suggested an entropy-based measure for assessing the

agreement between two partitions. By considering the probability
Nij

nj
that
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an object assigned to cluster Cj belongs to a class C′
i, we can compute the

entropy for the assignments in Cj :

E(Cj) = −

k′

∑

i=1

Nij

nj
log

Nij

nj
(1.34)

An overall score for a clustering C is given by the sum of the entropy values
for each cluster weighted by the fraction of objects assigned to that cluster:

E(C′, C) =
k

∑

j=1

nj

n
E(Cj) (1.35)

Smaller values for this measure are desirable, with a value of 0 indicating that
each cluster contains instances from a single class. To eliminate the strong
bias of Eqn. 1.35 with respect to k, a variant of this index was proposed in
[56], where the normalised entropy for a cluster Cj is calculated as:

NE(Cj) = −
1

log k′

k′

∑

i=1

Nij

nj
log

Nij

nj
(1.36)

Unlike purity and classification accuracy, entropy considers the distribution
of all classes in a cluster, rather than a single dominant class. However, this
index still exhibits a bias in favour of smaller clusters.

Strehl & Ghosh [51] observed that external measures such as purity and
entropy are biased with respect to the number of clusters k, since the prob-
ability of each cluster solely containing objects from a single natural class
increases as k increases. To address this problem, an alternative index was
proposed, based on mutual information, which quantifies the amount of in-
formation shared between the random variables describing a pair of disjoint
partitions.

Formally, let p′(i) and p(j) denote the probabilities that an object belongs
to class C′

i and cluster Cj respectively. Furthermore, let p(i, j) denote the
joint probability that an object belongs to both C′

i and Cj . For each data
object assigned to a class in C′, mutual information evaluates the degree to
which knowledge of this assignment reduces the uncertainty regarding the
assignment of the object in C. The mean reduction in uncertainty across all
objects can be expressed as:

I(C′, C) =

k′

∑

i=1

k
∑

j=1

p(i, j) log
p(i, j)

p′(i)p(j)
(1.37)

I(C′, C) takes values between zero and min (E(C′), E(C)), where the upper
bound is the minimum of the entropy values for the two clusterings. To pro-
duce values in the range [0, 1], the authors in [51] proposed normalised mutual
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information (NMI), where the degree of information shared between the two
clusterings is normalised with respect to the geometric mean of their entropies:

NI(C′, C) =
I(C′, C)

√

E(C′)E(C)
(1.38)

In practice, an approximation for this quantity, based on cluster assignments,
can be calculated using:

NMI(C′, C) =

∑k′

i=1

∑k
j=1 nij log

(

n·nij

n′

i
nj

)

√

(

∑k′

i=1 n′
i log

n′

i

n

)(

∑k
j=1 nj log

nj

n

)

(1.39)

An accurate clustering should maximise this score, where a value of 1 indicates
an exact correspondence between the assignment of objects in C′ and C, while
a value of 0 indicates that knowledge of C provides no information about the
true classes C′. Eqn. 1.39 does have a slight tendency to favour clusterings
for larger values of k, although it exhibits no bias against unbalanced cluster
sizes.

1.5.3 Stability-based techniques

Recently, a number of methods based on the concept of stability analysis have
been proposed for the task of model selection. The stability of a clustering al-
gorithm refers to its ability to consistently produce similar solutions on data
originating from the same source [36]. Since only a single set of data objects
will be generally available in unsupervised learning tasks, clusterings are gen-
erated on perturbations of the original dataset. A key advantage of stability
analysis methods lies in their ability to evaluate a model independently of
any specific clustering algorithm or similarity measure. Thus, they represent
a robust approach for selecting key algorithm parameters [38].

In this section, we focus on stability-based methods that are relevant when
estimating the optimal number of clusters k̂ in a dataset. These methods are
motivated by the observation that, if the number of clusters in a model is
too large, repeated clusterings will lead to arbitrary partitions of the data,
resulting in unstable solutions. On the other hand, if the number of clusters
is too small, the clustering algorithm will be constrained to merge subsets of
objects which should remain separated, also leading to unstable solutions. In
contrast, repeated clusterings generated using the optimal number of clusters
k̂ will generally be consistent, even when the data is perturbed or distorted.

Stability Analysis Based on Resampling

The most common approach to stability analysis involves perturbing the data
by randomly sampling the original objects to produce a set of τ non-disjoint
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subsets. For each potential value of k in a reasonable range [kmin, kmax], a
corresponding set of τ clusterings are generated on the data subsets. The
stability of the clustering model for each candidate value of k is evaluated using
indices operating on pairs of hard clusterings, such as the external validation
indices described previously. A higher overall stability score suggests that k
is a better estimate for the optimal value k̂.

A representative example of this approach is the algorithm proposed in
[39]. For each value of k, an initial partition C0 is generated on the entire
dataset using a partitional clustering algorithm, which represents a “gold stan-
dard” for analysing the stability afforded by using k clusters. Subsequently, τ
samples of the data are constructed by randomly selecting a subset of βn data
objects without replacement, where 0 ≤ β ≤ 1 denotes the sampling ratio con-
trolling the number of objects in each sample. A set of clusterings {C1, . . . , Cτ}
is then generated by applying the clustering algorithm to each sample. For
each clustering Ci, the fraction of co-assignments preserved from C0 is calcu-
lated, which is equivalent to the Rand index (1.31). An overall evaluation for
the stability afforded by k is found by averaging the agreement scores across
all τ runs. This process is repeated for each potential k ∈ [kmin, kmax]. A final

estimation for k̂ is chosen by identifying the value k leading to the highest
average agreement.

Law & Jain [38] proposed an alternative stability analysis approach for
model selection where the data is perturbed by bootstrapping. This involves
generating τ samples of size n by randomly sampling with replacement. Rather
than comparing each clustering to a single gold standard solution, stability is
evaluated by considering the level of agreement between each pair of cluster-
ings. A number of indices were considered for assessing agreement, including
the Jaccard index (1.30) and the Fowlkes-Mallows index (1.33). The authors
note that scores produced by these indices should be corrected for chance to
eliminate biases toward smaller values of k. After computing the variance of
the corrected agreement scores for each potential value k, the model resulting
in the lowest variance is selected as the best estimate for k̂.

Ben-Hur et al. [2] described a similar approach based on pairwise stability
analysis, where agglomerative hierarchical clustering is applied to each sample.
By using different cut-off levels from the same hierarchy, the output of a
single clustering procedure may be used in the evaluation of all potential
values of k. In [24] this approach was extended further to encompass the
problem of cluster tendency. This is achieved by setting a threshold θ value
for the minimum average pairwise stability that is sufficient to indicate a
consistent clustering model. If no stability evaluation exceeds this threshold
for any candidate k ∈ [kmin, kmax], the data is assumed to have no significant
underlying structure. The choice of θ largely depends on the index used to
measure the agreement between clusterings.
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Prediction-Based Validation

In supervised learning problems, model selection is typically performed by
identifying a learning model whose estimated prediction accuracy is highest.
A number of authors have suggested that the concept of prediction accuracy
can be adapted to the problem of evaluating models in clustering tasks. Recent
work by Tibshirani et al. [52] has provided a theoretical basis for prediction-
based validation methods, which assess the stability of a clustering model by
measuring the degree to which it allows us to consistently construct a classifier
on a training set that will predict the assignment of objects in a clustering of
a corresponding test set.

Formally, the validation process involves applying two-fold cross-validation
to randomly split a dataset X into disjoint training and test sets, denoted by
Xa and Xb respectively. Both sets are then clustered to produce partitions
Ca and Cb, typically using the standard k-means clustering algorithm. Sub-
sequently, a prediction Pb for the assignment of objects in the test set is
produced by assigning each xi ∈ Xb to the nearest centroid in Ca. Prediction
accuracy is measured by evaluating the degree to which the class memberships
in Pb correspond to the cluster assignments in Cb.

To numerically evaluate prediction accuracy, a new pairwise measure for
comparing partitions was proposed in [52], referred to as prediction strength.
For each cluster in the test clustering Cb = {C1, . . . , Ck}, we identify the
number of pairs of objects assigned to the same cluster that also belong to
the same class in the prediction Pb. These associations can be represented as a
n
2 ×

n
2 binary matrix M, where Mij = 1 only if the pair (xi,xj) are co-assigned

in both Cb and Pb. From this matrix, an evaluation is computed based on the
cluster containing the smallest fraction of correctly predicted pairs:

S(Cb,Pb) = min
1≤h≤k





1

|Ch| (|Ch| − 1)

∑

xi 6=xj∈Ch

Mij



 (1.40)

The cross-validation process is repeated over τ runs for each candidate value k
in the range [kmin, kmax]. The authors suggest a heuristic approach to select
the final number of clusters, which is chosen to be the largest k such that
ps(k) is above a user-defined threshold. This can be viewed as the selection of
the largest number clusters that can be reliably predicted for a given dataset.
They note that a threshold in the range [0.8, 0.9] was appropriate for the
datasets with which they evaluated the algorithm.

As a simple example, we consider a single cross-validation run for k = 2
applied to the set of 34 data objects shown in Figure 7(a). This dataset is
randomly divided into two subsets containing 17 objects each. A training clus-
tering Ca is generated on the first subset and a test clustering Cb is generated
on the second, as shown in figures 7(b) and 7(c) respectively. The centroids
µ1 and µ2 of Ca are subsequently used to build a nearest centroid classifier,
which produces the predicted classification Pb for the set of test objects as
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(a) Training (k = 2) (b) Testing (k = 2)

(c) Training (k = 3) (d) Testing (k = 3)

Fig. 1.7. Example of applying prediction-based validation to examine the suitability
of a clustering model with k = 2 for a synthetic dataset of 34 data objects.

illustrated in Figure 7(d). By constructing a 17× 17 co-assignment matrix M

from Cb and Pb, and applying Eqn. 1.40, we can calculate that this run leads
to a prediction strength of S(Cb,Pb) = 0.43, indicating that the clustering
model is relatively unstable. In practice, multiple cross-validation runs would
be applied to produce a result that is robust to the effects of unbiased random
sampling.

1.6 Feature Transformation Techniques

1.7 Feature Selection Techniques
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