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Abstract. A number of clustering algorithms have been proposed for
use in tasks where a limited degree of supervision is available. This prior
knowledge is frequently provided in the form of pairwise must-link and
cannot-link constraints. While the incorporation of pairwise supervision
has the potential to improve clustering accuracy, the composition and
cardinality of the constraint sets can significantly impact upon the level
of improvement. We demonstrate that it is often possible to correctly
“guess” a large number of constraints without supervision from the co-
associations between pairs of objects in an ensemble of clusterings. Along
the same lines, we establish that constraints based on pairs with uncer-
tain co-associations are particularly informative, if known. An evaluation
on text data shows that this provides an effective criterion for identifying
constraints, leading to a reduction in the level of supervision required to
direct a clustering algorithm to an accurate solution.

1 Introduction

Recently, a considerable amount of attention has been paid to the application
of machine learning algorithms in problems that do not perfectly correspond to
the standard distinction between supervised and unsupervised learning [1]. In
many domains, a limited degree of background knowledge will be available when
performing exploratory data analysis. While this may take the form of labelled
training data, in other situations a simpler type of supervision will be available
that describes the relations between pairs of data objects. The latter is commonly
represented as a set of pairwise constraints, where each constraint indicates that
two objects should either always be assigned to the same cluster (must-link)
or never be assigned together (cannot-link). A number of popular clustering
algorithms, such as standard k-means, have been adapted to incorporate this
type of information. While the addition of pairwise supervision has the potential
to improve clustering accuracy, the choice of constraints will often dictate the
level of improvement attained [2]. Many semi-supervised clustering tasks will be
active in nature, where the constraint oracle takes the form of a human expert.
In such applications, the number of queries for constraints that can be made will
be strictly limited.



In this paper, we tackle the problem of identifying constraints that are “infor-
mative” in the context of semi-supervised clustering. That is, we seek constraints
that will be most effective in guiding a clustering algorithm to produce more ac-
curate solutions. We differentiate these from constraints whose presence does
not lead to any noticeable improvement in clustering accuracy. To make this
distinction, we firstly establish a connection between hard pairwise constraints
and the frequency of co-assignment, or co-association, between pairs of objects in
an ensemble of clusterings. Specifically, Section 3.1 describes a process by which
it is often possible to “guess” or impute a large number of constraints with-
out supervision by examining these co-association values. Following from this,
in Section 3.2 we propose a new approach for selecting informative constraints
by identifying objects whose cluster assignments are ambiguous. In Section 4
we evaluate this approach on text data, where it is shown to lead to a reduc-
tion in the number of actual oracle queries required to produce a significant
improvement in clustering accuracy.

2 Related Work

2.1 Semi-Supervised Clustering

Given a set of n data objects X = {x1, . . . , xn}, a common representation for
background information pertaining to X is in the form of pairwise constraint sets:
must-link constraints M and cannot-link constraints C. This information can be
incorporated into traditional partitional clustering algorithms by adapting the
objective function to include penalties for violated constraints. For instance, the
Pairwise Constrained k-means (PCKM) algorithm [2] modifies the standard sum
of squared errors function to take into account both object-centroid distortions
in a clustering P = {π1, . . . , πk} and any associated constraint violations

Jpckm(P) =
k∑

c=1

∑
xi∈πc

||xi − µc||2 +
∑

(xi,xj)∈M,li 6=lj

wij +
∑

(xi,xj)∈C,li=lj

w̄ij (1)

where µc is the centroid of the cluster πc, and li denotes the cluster label of the
object xi in P. The weight wij signifies the size of the penalty incurred when a
must-link constraint between a pair (xi, xj) is violated, while w̄ij is the penalty
for violating a cannot-link constraint between the pair. These weights control
the influence given to external information during the assignment phase of the
algorithm. The objective (1) has been shown to have a probabilistic basis related
to the assignment of labels in Hidden Markov Random Fields (HMRFs).

As with standard partitional algorithms, the choice of initialisation strategy
for semi-supervised methods such as PCKM can greatly affect clustering ac-
curacy. An effective strategy in this context involves computing the transitive
closure of the graph formed by the constraints in M, and using the centroids
of the resulting λ neighbourhoods. If λ > k, where k is the desired number of
clusters, then a weighted variant of farthest-first initialisation may be employed
to select a subset of k well-separated centroids [3].



While research in the area of semi-supervised clustering has largely focused on
the development of new clustering algorithms, relatively little emphasis has been
placed on the important issue of selecting useful constraints. An initial foray into
this area was made with the two-stage Explore and Consolidate (E&C) approach
proposed by Basu et al. [2]. In the exploration stage, a set of k initial well-
separated neighbourhoods is identified, each of which belongs to be a different
natural class. Once the neighbourhoods have been formed, the consolidation
stage proceeds by randomly selecting unlabelled objects and assigning them to
correct neighbourhoods in a manner that requires as few constraints as possible.
The resulting centroids and constraint sets were used to provide supervision for
the PCKM algorithm.

2.2 Ensemble Clustering

It has been shown that combining the strengths of a diverse set of clusterings
can often yield more accurate and robust solutions [4]. Unsupervised ensemble
approaches typically involves two phases: a generation phase where a collection
of base clusterings is produced, and an integration phase where an aggregation
function is applied to the ensemble members to produce a consensus solution.
The most frequently employed integration strategy has been to use the infor-
mation provided by an ensemble to determine the level of association between
pairs of objects in a dataset [4, 5]. The fundamental assumption underlying this
strategy is that pairs belonging to the same natural class will frequently be co-
assigned during repeated executions of a clustering algorithm. In practice, these
pairwise co-associations are represented using a symmetric co-association ma-
trix. A consensus solution is recovered by applying a similarity-based algorithm
to the matrix, such as single-linkage agglomerative clustering.

Pairwise co-association values have also been used to gather information from
unlabelled data in order to improve the performance of kernel-based classification
algorithms. The bagged cluster kernel technique proposed by Weston et al. [6]
involves modifying a base kernel to include co-association information aggregated
from multiple k-means clusterings, which are generated on bootstrap samples.

2.3 Uncertainty Sampling

For many learning problems, large numbers of training examples will not be
available due to the expense of providing class labels. In these cases, active
learning techniques can be employed to identify and label informative data ob-
jects that will serve to maximise classification accuracy. One approach to active
learning that has widely been used is uncertainty sampling [7], where unlabelled
objects are prioritised based upon the level of uncertainty regarding their class
membership. An intuitive basis for measuring uncertainty is to consider the dis-
agreement between the predictions made by a committee of classifiers [8]. For
instance, Melville & Mooney [9] suggested measuring the uncertainty for an un-
labelled object based on the margin between its maximum class probability and
the probability of the next best competing class.



3 Constraint Identification

The composition and cardinality of the sets M and C can significantly impact
upon the improvements achieved by semi-supervised algorithms. In addition, as
the number of data objects n increases, the number of possible constraints also
significantly increases. If constraints are selected at random, many oracle queries
may be required before any noticeable improvement in clustering accuracy is
achieved. To illustrate this, Figure 1 shows the effect of adding constraints for
randomly chosen pairs on the normalised mutual information (NMI) [4] scores
produced when the PCKM algorithm is applied to the 3-news-similar dataset.
Even after the addition of 1000 constraints, little significant increase in accuracy
is evident. For many semi-supervised tasks, it will be the case that the oracle is
a human expert. Since it is unrealistic to expect a human to respond to so many
queries, an intelligent strategy for choosing constraints is desirable.

3.1 Imputing Constraints from Pairwise Co-associations

When seeking to choose a small set of highly informative constraints, it may
be helpful to eliminate those “easy” constraints that can be found without the
aid of a supervisor. In this section, we show that it is possible to identify such
constraints by examining the relationship between pairs of objects over a large
collection of base clusterings, denoted P = {P1, . . . ,Pτ}.

Like their supervised counterparts, it has been demonstrated that unsuper-
vised ensembles are most effective when constructed from solutions that are both
accurate and diverse [4]. To encourage diversity, a commonly employed strategy
has been to apply a partitional clustering algorithm, such as standard k-means,
to different subsamples of the same dataset. In practice, typically 60-80% of the
data is included when generating each base clustering. After each sample is clus-
tered, membership assignments for the out-of-sample objects are determined by
applying a suitable classification scheme, such as a nearest centroid classifier.

Once an ensemble P has been generated, it is customary to represent the
co-assignments between objects across all clusterings in the form of a symmetric
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Fig. 1. Effect of randomly selected
constraints on 3-news-similar dataset.
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Fig. 2. Effect of randomly selected imputed
constraints on 3-news-related dataset.



1. Initialise A as the n× n empty co-association matrix for the dataset X.
2. For t = 1 to τ :

1. Draw a sample of objects Xt by random sampling without replacement.
2. Generate a base clustering Pt by clustering the sample Xt.
3. Classify each out-of-sample object based on the clusters in Pt.
4. For each pair (xi, xj) assigned to the same cluster in Pt, update A:

Aij = Aij + 1/τ

3. Construct imputed constraint sets (M′, C′) based on the co-association of each
unique pair (xi, xj), according to the rule given in Eqn. 2.

Fig. 3. Pairwise constraint imputation procedure.

n × n co-association matrix A. In this matrix, an entry Aij ∈ [0, 1] denotes
the fraction of clusterings in P in which the objects xi and xj were assigned
to the same cluster. Both the ensemble and cluster kernel techniques discussed
in Section 2.2 are motivated by the assumption that the matrix A encodes
information describing the probability or confidence with which a pair of objects
will be grouped together in the natural classes of the data. For a sufficient number
of base clusterings, a value Aij ≈ 1 is a strong indicator that the pair (xi, xj)
belong to the same class, while Aij ≈ 0 indicates that they belong to different
classes. On the other hand, a value Aij ≈ 0.5 implies that we are highly unsure
about whether the objects are actually conceptually related to one another.

When performing ensemble clustering, we are typically interested in produc-
ing a complete disjoint partition of the data. This can result in “uncertain” pairs
being grouped together in the consensus clustering. For instance, the integration
approach described in [5] only requires a value Aij > 0.5 for a pair to be placed
in the same consensus cluster. However, given the goal of accurately deducing
constraints, we focus on pairs with unambiguous associations. By thresholding
the values in A, we can eliminate uncertain pairs from consideration. Specifi-
cally, we choose a threshold value κm for must-link constraints, which represents
the minimum level of confidence required for the co-assignment of two objects,
and a threshold κc for cannot-link constraints, which represents the maximum
level of uncertainty allowed when concluding that two objects are unrelated.
Both values lie in the range [0, 1], with the natural requirement that κm >> κc.
Formally, we construct imputed constraint sets (M′, C′) by using the rule:

Aij ≥ κm add (xi, xj) to M′

Aij ≤ κc add (xi, xj) to C′
κc < Aij < κm ignore.

(2)

The application of the method outlined in Figure 3 frequently produces con-
strained pairs that correspond to those generated from natural class labels.



While ensemble clustering can often provide a more comprehensive picture
of the natural structures present in a dataset, it is interesting to note that con-
straints imputed in this way, even if correct, will rarely prove directly useful
in semi-supervised clustering. Surprisingly, in some situations these constraints
can actually prove harmful. We suggest that this phenomenon is due to the fact
that these easily imputed constraints leave regions in certain underlying classes
under-represented, so that initial clusters resulting from the imputed must-link
constraints are skewed. As an example, Figure 2 shows the effect of randomly
adding constraints from the set of pairs that were correctly imputed on the 3-
news-related dataset. Here, the addition of a large number of imputed constraints
actually results in less accurate solutions. In contrast, when randomly choosing
from among non-imputed pairs, the quality of the resulting clusterings increases.

3.2 Selecting Informative Constraints

Motivated by the observations made in the previous section, we now describe a
new ensemble-based selection procedure that makes use of pairwise co-associations
to focus on informative constraints. This procedure consists of two phases: firstly
we use the imputed set M′ to identify a set of representative objects {r1, . . . , rk}
which correspond to distinct classes in the data; subsequently we construct clus-
ters around these representatives by adding constraints relating to objects whose
cluster assignments are difficult to determine.

While imputed constraints may not be directly useful for semi-supervised
clustering, they do provide a starting point for finding representative objects.
This can be achieved by examining the set of neighbourhoods produced by
computing transitive closure of the imputed must-link constraints in M′. We
frequently observe that the largest neighbourhoods produced in this way will
correspond to distinct natural classes in the data. This provides a basis for se-
lecting representatives for k different classes using only a small number of oracle
queries. Firstly, the neighbourhoods are arranged in descending order by size,
and the median object of each neighbourhood is identified (i.e. the object near-
est the neighbourhood centroid). The median of the largest neighbourhood is

1. Identify imputed constraint sets (M′, C′) from a co-association matrix A.
2. Compute the transitive closure of M′, and identify the median objects of each

neighbourhood based on the values in A.
3. Choose the first representative r1 to be the median of the largest neighbourhood.
4. For c = 2 to k:

– Select rc as the median of the next largest neighbourhood, such that a
cannot-link constraint exists between rc and each of {r1, . . . , rc−1}.

5. Output a clustering P = {π1, . . . , πk}, where rc ∈ πc, together with any other
object with a must-link constraint to rc.

Fig. 4. Constraint set initialisation phase.



elected to be the first representative r1. Each of the (k − 1) other representa-
tives is chosen to be the median object of the largest remaining neighbourhood,
such that a cannot-link constraint exists between that median and all previ-
ously selected representatives (i.e. it belongs to a new class). The application of
this initialisation scheme leads to an initial clustering P = {π1, . . . , πk}, where
rc ∈ πc. Any objects involved in must-link constraints are also assigned to the
appropriate cluster in P. The complete initialisation procedure is outlined in
Figure 4. A particular advantage of this approach is that, even if constraints
are only available for a subset of objects, good representatives can be identified
using imputed neighbourhoods derived from clusterings of the entire dataset.

In the second phase of the proposed constraint selection procedure, we expand
the clustering P by incrementally assigning objects using pairwise supervision.
Objects are processed using an ordering based upon the level of uncertainty
regarding their association to the existing clusters, thereby prioritising those ob-
jects for which queries to an external oracle are particularly necessary. Formally,
let S ∈ IRn×k denote the object-cluster association matrix, such that Sic is the
mean co-association between the object xi and the members of the cluster πc:

Sic =
1
|πc|

∑
xj∈πc

Aij (3)

To evaluate the degree of uncertainty in assigning an object to a cluster in
P, we use a criterion based on the well-known silhouette index [10], which is
often employed in internal cluster validation. Rather than using distance values
computed on the raw data, we consider the margin between competing clusters
based on object-cluster associations. Specifically, for a candidate query object xi,
let πa denote the cluster with which it has the highest level of association, and
let πb denote the next best alternative cluster. The certainty of the assignment
of xi can be measured using the expression:

u(xi) =
2 · Sia

Sia + Sib
− 1 (4)

Since it is always the case that Sia ≥ Sib, Eqn. 4 produces an evaluation in the
range [0, 1], where a smaller value is indicative of a greater degree of uncertainty.

Unfortunately, if objects are chosen based on an ordering of the uncertainty
scores u(xi), this can potentially result in the generation of a large succession of
constraints for a single natural class. The use of such unbalanced constraint sets
can reduce the performance gain achieved by semi-supervised algorithms when
using small constraint sets. To address this problem, we introduce a bias in
favour of under-represented classes. This is accomplished by weighting object-
cluster association values with respect to cluster size, leading to an adjusted
certainty criterion

w(xi) =
2 · Tia

Tia + Tib
− 1 such that Tic =

|πc|∑
j |πj |

· Sic (5)

where Tia denotes the maximum weighted object-cluster association value, and
Tib is the next highest value. This weighting has the effect of producing higher



1. Update the object-cluster association matrix S.
2. Select the next most uncertain object xi with the minimum value for w(xi), as

calculated using Eqn. 5.
3. Arrange the clusters in descending order using the values in the i-th row of S.
4. For each cluster πc:

– Query the oracle for the pair (xi, rc) until a must-link constraint is found.
5. Assign xi to the cluster containing the correct representative.
6. Repeat from Step 1 until no further oracle queries are possible.

Fig. 5. Constraint set expansion phase.

scores for objects that have strong associations with large clusters. Since objects
with lower scores are prioritised, this encourages the selection of constraints for
objects that are likely to be assigned to smaller clusters.

Once an unassigned object xi has been selected based on the minimal value
for Eqn. 5, its correct cluster in P is found by querying the oracle for constraints
between xi and each of the k representatives. Following the observations made
in [2], it is apparent that the correct cluster can be located using at most (k−1)
queries. We can potentially further reduce the number of queries required by
sorting the values in the i-th row of S in descending order. Candidate clusters
are processed in this order until a must-link pair (xi, rc) is generated. If such a
constraint is not found after (k − 1) queries, it can be assumed that the object
belongs to the final cluster without the requirement for an additional query. After
assigning xi to the correct cluster, uncertainty scores for the remaining objects
are recalculated. An outline of the expansion phase is provided in Figure 5.

4 Evaluation

In this section, we describe the results of two sets of experimental evaluations
conducted on text data. Firstly, we assess the veracity of constraints imputed
using the approach discussed in Section 3.1. In the second set of experiments,
we evaluate the performance of semi-supervised clustering when constraints are
selected using the ensemble-based procedure proposed in Section 3.2.

Both sets of experiments were performed on six text corpora, which present
different degrees of difficulty when performing document clustering. The bbc cor-
pus contains news articles pertaining to five topical areas: business, entertain-
ment, politics, sport and technology. The bbcsport corpus consists of a smaller
set of sports news articles from the same source1. The cstr dataset2 represents a
small collection of technical abstracts. The 3-news-related dataset (also referred
to as ng17-19 ) is a commonly used subset of the 20-newsgroups collection3, con-

1 Both available from http://mlg.ucd.ie/datasets/
2 Original abstracts available from http://www.cs.rochester.edu/trs
3 Available from http://people.csail.mit.edu/jrennie/20Newsgroups/



sisting of three groups pertaining to politics that exhibit some overlap. Another
benchmark subset, the 3-news-similar dataset, consists of three IT-related news-
groups that overlap significantly. The reuters5 dataset is a subset of the widely-
used Reuters-21578 corpus of news articles, containing documents from the five
largest categories. To pre-process the datasets, we applied standard stop-word
removal and stemming techniques. We subsequently removed terms occurring in
less than three documents and applied log-based tf-idf normalisation.

4.1 Validation of Imputed Constraints

To investigate the effectiveness of the constraint imputation technique, we gener-
ated an ensemble consisting of 2000 members for each dataset. These clusterings
were formed by applying standard k-means with cosine similarity and random
initialisation to samples of documents, using a subsampling rate of 80%. We
subsequently constructed a co-association matrix and a corresponding set of im-
puted constraints for each corpus by following the procedure outlined in Figure 3.
In practice, we found that conservative thresholds of κm = 0.98 and κc = 0 were
suitable for use with a variety of text datasets.

Table 1 presents details of the imputed must-link and cannot-link constraint
sets generated for each dataset. Note that the numbers reported do not take into
account any additional cannot-link constraints that can be inferred from the im-
puted must-link constraints. We compare the imputed sets to the correct pairwise
relations defined by the natural classification of the datasets, using measures of
pairwise precision (PP) and pairwise recall (PR). Given an imputed set Y ′, the
former refers to the fraction of imputed pairs that are correctly constrained,
while the latter represents the fraction of the complete set Y recovered:

PP (Y ′,Y) =
|Y ′ ∩ Y|
|Y ′|

PR(Y ′,Y) =
|Y ′ ∩ Y|
|Y|

(6)

On each of the datasets considered, a large number of must-link and cannot-link
constraints are correctly imputed. In all but one case, pairwise precision scores
of 0.9 or higher were achieved for both constraint types. Table 1 also lists the
mean NMI scores of the base clusterings in each ensemble. It is interesting to

Table 1. Details of imputed constraint sets for text datasets.

Dataset n Base Must-Link Cannot-Link
NMI Selected PP PR Selected PP PR

bbc 2225 0.80 191619 0.98 0.38 1021257 1.00 0.52
bbcsport 737 0.71 4842 1.00 0.08 19516 1.00 0.09
cstr 505 0.64 4389 0.99 0.12 40874 0.99 0.44
reuters5 2317 0.46 145336 0.94 0.15 1202021 0.91 0.61
3-news-related 2625 0.41 245886 0.90 0.19 12620 1.00 0.01
3-news-similar 2938 0.22 17761 0.67 0.01 3025 0.95 0.01



observe that, even when the quality of the base clusterings used to construct
a co-association matrix is poor, it is still possible to produce an accurate set
of imputed constraints. Due to the use of conservative threshold values in the
imputation process, the level of recall is significantly lower than the level of preci-
sion. However, for all the datasets under consideration, the number of correctly
imputed pairs is significantly higher than the number of constraints we could
expect to be provided by a human resource.

4.2 Constraint Selection Evaluation

We now compare the performance of the constraint selection approach proposed
in Section 3.2 with that of two alternative strategies. The first is the Explore
and Consolidate (E&C) approach described in [2]. As a baseline, we also con-
sider the random selection of constraints from all the available pairs in the data.
As our choice of semi-supervised clustering algorithm, we employ PCKM with
cosine similarity, and set the value of k to correspond to the number of natural
classes in the data. When evaluating the case where no constraints are present,
initial centroids are selected for the clustering algorithm using farthest-first ini-
tialisation. The constraint selection approaches were evaluated over 50 two-fold
cross validation trials. As an oracle, we use the natural classification supplied
for each dataset. Each oracle query results in either a must-link or a cannot-link
constraint. In each trial, constraints are available for 90% of the data, while the
remaining 10% of the data constitutes the test set. In the assignment phase of
PCKM, all constraints are given an equal weighting of 0.001.

Figure 6 shows a comparison of the mean NMI scores achieved by the three
constraint selection strategies when applied to the six datasets under considera-
tion. Note that the reported scores are calculated solely based on the assignment
of objects in the test set. We focus on the performance of the three selection
strategies for the first 150 queries, since the selection of a larger number of con-
straints by a human oracle in this context is unrealistic. For all three methods,
the points on the validation plots indicate the mean NMI score achieved using
the first p selected constraints. This ensures that each method has the same level
of supervision.

Firstly, it is clear that both the E&C and ensemble strategies represent sig-
nificantly better options than simply choosing constrained pairs at random. For
data with poorly separated clusters, such as the 3-news-related and 3-news-
similar datasets, little improvement in clustering accuracy is evident after 150
random queries. In contrast, the ensemble strategy leads to a significant increase
in accuracy, even after the addition of only 10 constraints. In general, we ob-
served that ensemble-based selection led to greater increases in accuracy after
the first 10–30 constraints than afforded by the E&C technique. This may be
attributed to the selection of good representatives based on imputed must-link
constraints, and, in particular, the use of the weighted uncertainty criterion (5)
to encourage the selection of constraints from under-represented classes. For the
bbc and bbcsport datasets, both intelligent selection methods did result in an ini-
tial drop in accuracy when using a very small number of constraints. However,
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Fig. 6. Comparison of mean accuracy (NMI) scores for constraint selection strategies
when applied to text datasets.



the subsequent increases in accuracy were substantial. It is interesting to note
that the recall of the imputed constraints did not have a direct impact on the
choice of suitable representatives for the first phase of ensemble-based selection.
Also, in the case of the 3-news-similar dataset, which achieved a relatively low
level of pairwise precision as shown in Table 1, both the imputed constraints
and the related co-association values still proved useful when selecting real con-
straints. While initialising the proposed ensemble approach does require more
time than the E&C strategy, the running times were not prohibitive in practice.
We suggest that, for many applications, the cost of additional machine cycles
will be less than the expense of making additional queries to a human oracle.

5 Conclusion

In this paper, we demonstrated that it is often possible to correctly impute sets
of pairwise constraints for data by examining the co-associations in an ensemble
of clusterings. Furthermore, we proposed a new approach for selecting infor-
mative constraints for use in semi-supervised clustering tasks, based upon the
uncertainty of object-cluster associations. Evaluations on text data have shown
this approach to be effective in improving clustering accuracy, particularly when
working with a small number of constraints. We suggest that the notion of im-
puted constraints may also be relevant in other contexts, such as when inte-
grating information from different feature spaces, or where prior knowledge is
available in the form of one or more existing clusterings of the data.
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