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Abstract. Recently, stability-based techniques have emerged as a very
promising solution to the problem of cluster validation. An inherent
drawback of these approaches is the computational cost of generating
and assessing multiple clusterings of the data. In this paper we present
an efficient prediction-based validation approach suitable for application
to large, high-dimensional datasets such as text corpora. We use ker-
nel clustering to isolate the validation procedure from the original data.
Furthermore, we employ a prototype reduction strategy that allows us to
work on a reduced kernel matrix, leading to significant computational
savings. To ensure that this condensed representation accurately reflects
the cluster structures in the data, we propose a density-biased selection
strategy. This novel validation process is evaluated on a large number
of real and artificial datasets, where it is shown to consistently produce
good estimates for the optimal number of clusters.

1 Introduction

The task of evaluating the output of a clustering algorithm, referred to as clus-
ter validation, is a fundamental problem in unsupervised learning. One common
application of validation is in the identification of suitable values for algorithm
parameters such as the optimal number of clusters k̂. Internal validation indices,
which make assessments based on intrinsic properties of the raw data, have
frequently been used for this task in the past [1]. However, many of these in-
dices make assumptions regarding the structure of clusters. On the other hand,
external validation techniques, which assess the degree to which a clustering
corresponds to the “natural classes” in the data, are not directly applicable for
parameter selection since external knowledge will typically be unavailable during
the clustering process.

Recently, methods based on stability analysis have proved popular for the
task of model selection. The stability of a clustering model refers to its ability to
consistently replicate similar solutions on data originating from the same source
[2]. Since there is often only a single set of data available in unsupervised learn-
ing scenarios, solutions are typically obtained by clustering subsamples of the
original dataset. If the solutions on different samples agree, we may conclude
that the model is appropriate for the data. A related approach for estimating k̂



was proposed in [3], which is motivated by the concept of prediction accuracy in
supervised learning. This prediction-based validation scheme involves assessing,
for a given number of clusters k, the degree to which we can consistently con-
struct a classifier on a training set that will accurately predict the assignment
of objects in a clustering of a corresponding test set.

A key advantage of these methods lies in their ability to evaluate clustering
solutions without making assumptions about the true cluster structures in the
data. However, from a computational perspective, the use of stability analysis in
cluster validation has significant drawbacks. Due to the time required to generate
and compare multiple clusterings of the data, such methods have rarely been
applied to high-dimension, large-scale datasets such as text corpora.

In this paper, we tackle the computational issues of stability analysis by
proposing an efficient prediction-based validation scheme. Our approach makes
use of kernel clustering methods so that we no longer need to generate clusterings
in the original high-dimensional space. Furthermore, we propose a novel unsu-
pervised prototype reduction strategy that allows us to construct a condensed
kernel matrix, leading to substantial efficiency improvements in the subsequent
validation procedure without significantly impacting upon its ability to correctly
identify k̂. Rather than explicitly computing a new set of reduced prototypes in
the original feature space, we rely on the “kernel trick” [4] to produce an implicit
representation of the new objects in the kernel-induced space. To ensure that
this reduced representation is a good proxy for the full dataset, we present a
density-biased prototype selection strategy that allows us to consistently pro-
duce good estimates for the number of clusters in text corpora. On text data,
our evaluation shows that the proposed scheme results in a 16-20 fold speed-up
without any loss in acuity as a validation score.

The remainder of this paper is organised as follows. The next section provides
a summary of relevant work pertaining to cluster validation and prototype reduc-
tion. In Section 3 we discuss our proposed validation scheme, with a particular
focus on its application to document clustering. To demonstrate the effectiveness
of the scheme, in Section 4 we compare it to existing methods on a large num-
ber of real and artificial datasets. Finally, Section 5 presents concluding remarks
and suggestions for future work. Note that an extended version of this paper is
available as a technical report with the same title [5]1.

2 Related Work

2.1 Cluster Validation

The task of identifying the optimal number of clusters presents a significant
challenge when clustering documents. Popular partitional algorithms such as
k-means require the a priori selection of a value for k. In practice, users will
often generate multiple clusterings over a range values for k and select the best
partition of the data according to some objective function. Alternatively, when
1 TODO: URL here?



hierarchical clustering algorithms are employed, a termination criterion is often
used to identify a suitable point at which agglomeration or sub-division ceases.
In either case, some form of internal validation criterion is required to evaluate
partition quality. In the past, measures such as the gap statistic [6] and the
Bayesian information criterion [7] have been applied in certain domains to select
a value for the number of clusters. However, these tend to be model dependent
in the sense that they make assumptions about the structure of clusters in data
[2]. In addition, many internal criteria are tied to a specific distance function
or clustering technique. As a result, their ability to detect arbitrarily-shaped
clusters in complex text datasets is generally limited.

2.2 Stability-Based Validation

Validation techniques based on stability analysis have recently been shown to
be particularly effective in determining the optimal number of clusters in data
[2]. These methods seek to infer k̂ based on a clustering model’s ability to con-
sistently generate similar partitions on data originating from the same source.
In practice, a clustering algorithm employing k̂ should be robust with respect to
perturbations of the data produced by subsampling, resulting in a high level of
stability across many clusterings.

Tibshirani et al. [3] proposed a novel method for stability analysis which is
motivated by the concept of prediction accuracy in supervised learning. In prac-
tice, each run of the validation process involves applying two-fold cross-validation
to randomly split the dataset X = {x1, . . . , xn} into disjoint training and test
sets, denoted Xa and Xb respectively. Both sets are then clustered to produce
partitions Ca and Cb, using an algorithm such as k-means. Subsequently, a pre-
diction Pb for the assignment of objects in the test set is produced by assigning
each xi ∈ Xb to the nearest centroid in Ca. Prediction accuracy is measured
by evaluating the degree to which the class memberships in Pb correspond to
the cluster assignments in Cb. To formally produce an evaluation, the authors in
[3] proposed a new measure for comparing partitions, referred to as prediction
strength. For each cluster in the test clustering Cb = {C1, . . . , Ck}, we identify
the number of pairs of objects assigned to the same cluster that are also assigned
to the same class in the predicted partition Pb = {P1, . . . , Pk}. These associa-
tions can be represented as a n

2 ×
n
2 binary matrix M, where Mij = 1 only if

the objects xi and xj are co-assigned in both Cb and Pb. From this matrix, an
evaluation is computed based on the cluster containing the minimum fraction of
correctly predicted pairs:

S(Cb,Pb) = min
1≤h≤k

 1
|Ch| (|Ch| − 1)

∑
xi 6=xj∈Ch

Mij

 (1)

This prediction process is repeated for τ runs for each candidate value k in
a reasonable range [kmin, kmax]. A final estimate for k̂ is made by identifying
the largest k such that the corresponding mean prediction strength is above a
user-defined threshold.



2.3 Prototype Reduction

Prototype reduction techniques have been extensively used in supervised learn-
ing for tasks involving large datasets, typically in conjunction with a nearest-
neighbour classifier. These techniques are concerned with producing a minimal
set of objects or prototypes to represent the data, while ensuring that a classifier
applied to this set will perform approximately as well as on the original dataset.
In the literature, these techniques are generally divided into two categories: pro-
totype selection techniques seek to identify a subset of representative objects
from the original data, while prototype extraction techniques involve the cre-
ation of an entirely new set of objects. A comprehensive overview of supervised
reduction schemes has been provided by Bezdek and Kuncheva [8].

Many reduction techniques are computationally intensive, often involving
clustering-like procedures to identify relevant prototypes. In contrast, Hamamoto
et al. [9] proposed a simple, fast, stochastic technique (BTS), based on bootstrap
editing. Initially, a random sample of n′ seed objects is drawn from the dataset.
Each seed object is then replaced by a new prototype constructed from the mean
of its p-nearest neighbours and the seed itself. A 1-NN classifier is then applied
to the new set of n′ prototypes. The entire process may be repeated multiple
times to give improved results. In [10] a novel framework was proposed which
involves using a chosen reduction scheme, such as BTS, to produce a smaller
set of prototypes, on which a smaller kernel matrix is constructed. Ensemble
classifier methods are then employed on this kernel to compensate for any loss
in accuracy resulting from the reduction in dataset size.

While most work in prototype reduction has focused on supervised learning
tasks, the concept has been used implicitly as part of many clustering algorithms.
Notably, Cutting et al.proposed a technique, referred to as fractionation, to
improve the efficiency of hierarchical clustering methods for large text corpora,
which can be viewed as a form of prototype reduction. The procedure involves
randomly splitting the corpus into fractions. The documents in each fraction are
then clustered separately so that, by treating each cluster as a single “meta-
document”, the number of data objects is subsequently reduced. It is interesting
to note that the application of prototype selection in clustering is closely related
to both the problem of outlier removal [11] and the choice of seeds in cluster
initialisation [12].

3 Proposed Method

For small datasets, stability-based validation techniques offer an attractive op-
tion for inferring a value for k̂. However, for larger, high-dimensional data, their
use is often unfeasible. As the number of dimensions increases, the time required
to repeatedly apply an algorithm such as k-means will greatly increase. The
number of objects n will also be a limiting factor, as a larger value for n will
substantially increase the computational cost of the clustering and the stability
assessment procedures, which typically run in O(n2) time or slower. To tackle



these issues, we now introduce an efficient prediction-based validation method
suitable for use on text corpora.

3.1 Kernel-Based Stability Analysis

To avoid having to work in the original feature space space, we make use of
recently proposed kernel clustering methods. A kernel function is usually repre-
sented by an n × n kernel matrix K, where Kij indicates the affinity between
objects xi and xj . The advantage of using kernel methods in the context of stabil-
ity analysis stems from the fact that, having constructed a single kernel matrix,
we may subsequently generate multiple partitions without referring back to the
original data. A variety of popular clustering techniques have been re-formulated
for use in a kernel-induced space. As the standard k-means algorithm has com-
monly been used in both stability analysis and document clustering, we focus
here on the use of the corresponding kernelised k-means algorithm.

To form the basis for our validation scheme, we choose the prediction-based
method proposed in [3] due to its empirical success and computational advantage
over other stability-based methods. The latter derives from the fact that, since
we employ two-fold cross validation to produce disjoint training and test sets,
each run of the kernel k-means algorithm involves only a sample of n

2 objects. To
assess prediction accuracy, some authors have suggested the use of set matching
measures, such as partition similarity [13]. However, we make use of an adjusted
version of the prediction strength measure (1) because of its strong theoretical
foundation and superior empirical performance. Rather than using a heuristic
method to choose among the candidate values of k, we select the value k that
leads to the maximum average score over τ runs. Since Eqn. 1 exhibits a natural
bias toward smaller values of k, we employ the widely-used adjustment technique
described in [14] to correct for chance agreement:

S′(Cb,Pb) =
S(Cb,Pb)− S̄(Cb,Pb)

1.0− S̄(Cb,Pb)
(2)

Note that S̄(Cb,Pb) is the expected prediction strength on the split (Xa,Xb) for
a given k, which may be approximated by calculating the mean value of Eqn. 1
over a large number of pairs of random partitions.

As discussed in [2], the choice of classifier used to make predictions should
complement the clustering algorithm. To “mimic” the assignment behaviour of
the kernel k-means algorithm, we employ a kernel nearest centroid classifier, such
that each object in Xb is classified as being a member of the class represented
by the nearest pseudo-centroid in the training clustering. Subsequently, we use
Eqn. 2 to evaluate the degree to which the predicted classification agrees with
the clustering of Xb as produced by kernel k-means.

3.2 Kernel Reduction

In the previous section we described a method for stability-based validation that
is suitable for use on high-dimensional data. However, the validation process still



requires τ runs consisting of clustering and prediction assessment phases, which
both run in O((n

2 )2) time. Clearly, decreasing n will make the validation process
significantly less computationally expensive. Motivated by existing techniques
such as fractionation [15], it is apparent that an intuitive solution is to create
a reduced set of n′ < n objects, upon which the validation procedure may be
subsequently applied. However, any such reduction must be performed in a way
that preserves the structure of the true classes in the data. Specifically, we wish
to ensure that the expected number of prototypes representing each class is
approximately proportional to the size of that class. In addition, we wish to
cover both core and outlying regions within these classes.

Meeting these requirements without any form of supervision is not a triv-
ial task. In [8] it was noted that reduction approaches utilising class informa-
tion tend to be far more successful than their purely unsupervised counterparts.
Since the former generally involve processing each class separately, the resulting
reduced prototypes will be “meaningful” in the sense that they will represent
regions from a single class only. In the absence of class labels we must rely upon
intrinsic properties of the data to ensure that all cluster structures are adequately
represented. Unfortunately, text corpora often contain unbalanced cluster sizes,
which may also differ in their relative densities, making the task particularly
problematic. To address these issues, we propose a reduction scheme consisting
of two phases. In the first phase, prototype extraction is used to generate a set
of candidate prototypes formed from small homogeneous regions of the data.
The second phase selects from among these a subset of n′ prototypes to build a
reduced kernel matrix K′.

Firstly, we create a set of extracted prototypes S = {s1, . . . , sn} in a manner
similar to that employed by the supervised BTS reduction scheme [9], where
new prototypes are formed by locally combining subsets of the original dataset
X . Formally, we define a neighbourhood Ni as a subset of X consisting of a seed
object xi together with its set of p nearest neighbours. A new prototype si may
be constructed from the mean of these p + 1 objects. Since we wish to work in
the kernel-induced space only, we consider si to be the pseudo-centroid of the
subset Ni as calculated from the values in K. Motivated by the need to construct
meaningful prototypes, it is apparent that, as regions forming cluster structures
will normally be locally homogeneous, the majority of the set of neighbours of
each object are likely belong to the same cluster as that object [16]. Therefore,
prototypes constructed from the centroid of sufficiently small neighbourhoods
will generally be representative of a single natural class.

However, the problem remains of selecting a subset S ′ of n′ optimal proto-
types from the n possible candidates. A possible solution is to apply unbiased
random sampling to choose S ′. However, this approach has several drawbacks
in the context of validation. As stated previously, we wish to select a fraction of
prototypes from each class that is proportional to the size of that class in the
original dataset. A single random sample from S is not guaranteed to achieve
this. As an example, we consider the case of the 20NG subset described in Section
2.2. Figures 1(a) and 1(b) respectively show the block-ordered matrices corre-



(a) (b) (c)

Fig. 1. Gram matrix for (a) full kernel; (b) kernel reduced by random sampling; (c)
kernel reduced by density selection.

sponding to the full kernel matrix and a reduced matrix produced by randomly
selecting seeds. From the latter, it is evident that the smaller ‘hockey’ class is
not adequately represented after the random reduction process. We observed in
our evaluations that subsets of reduced prototypes chosen in this way frequently
fail to produce a true proxy for the dataset, resulting in poor estimations for k̂
in the subsequent validation process. In these cases, the failure is often due to
the neglection of smaller clusters or important sub-regions within clusters. While
we could run the process multiple times and aggregate the results, the resulting
computational cost would typically negate the benefits of performing prototype
reduction.

As an alternative, the second phase of our reduction procedure employs a
deterministic density-biased strategy to select the subset S ′. This procedure has
similar goals to existing density-biased sampling techniques (e.g. [17]), but is
stochastic and does not require that we partition the original high-dimensional
feature space. Firstly, we define the compactness of a neighbourhood Na as the
average of the pair-wise affinities between its constituent members:

C(Na) =

∑
xi,xj∈Na

Kij

|Na|2
(3)

where |Na| = p + 1. This is equivalent to the “self-similarity” of the pseudo-
centroid formed from Na. In the selection process, the prototypes in S are ranked
in descending order according to their compactness. We now uniformly choose
n′ = n

ρ prototypes, where ρ is the reduction rate that determines the degree to
which the number of objects should be reduced. Specifically, we select every ρ-th
prototype from the ordered list, thereby ensuring that we represent all density
patterns in the data. We then build the reduced kernel matrix K′ based on
these n′ prototypes. Rather than computing explicit representations of the new
prototypes in the original feature space, we can make use of the affinity values in
the original kernel matrix to directly construct K′. Formally, the affinity between
a pair of reduced prototypes si and sj is defined as:

K ′
ij =

∑
xa∈Si,xb∈Sj

Kab

(p + 1)2
(4)



While it is possible that a matrix constructed in this way may not always be
positive semi-definite, it has previously been shown in [18] that this does not
pose a significant problem for the kernel k-means algorithm.

Referring back to our previous example, we can see that, unlike in the case of
random sampling, the reduced kernel matrix in Figure 1(c) is clearly represen-
tative of the two classes in the original dataset, despite their differing sizes and
densities. In practice, we consistently observe that this density-biased selection
strategy produces a set of extracted prototypes that accurately summarise the
underlying structures in the data. We contend that this success is due to the in-
clusion of regions of all densities in the data, ensuring good coverage of clusters
of varying densities and all sub-regions within those clusters.

Once we have constructed the reduced kernel matrix, the validation scheme
proceeds as described in Section 3.1. The application of the proposed reduc-
tion strategy results in a significant decrease in the computational cost of the
validation process. Our approach does involve a once-off initialisation step, re-
quiring time O(n log n) for the prototype extraction phase and O(n′2p2) for the
construction of K′. However, the computational gains in the subsequent valida-
tion process are substantial. For each of the τ runs, the costs associated with
clustering and prediction assessment are both reduced to O(( n

2ρ )2).

3.3 Application to Document Clustering

While our proposed method may be used in conjunction with any valid ker-
nel function, for document clustering we make use of a linear kernel that has
been normalised according to the approach described in [4], resulting in a ker-
nel matrix that is equivalent to that produced by the standard cosine similarity
measure. Although this kernel represents an intuitive choice for document clus-
tering, its matrix will typically suffer from the problem of diagonal dominance.
This phenomenon occurs when, for a given kernel function, self-similarity val-
ues are large relative to between-object similarities. It has been shown in [18]
that this can negatively impact upon the accuracy and stability of centroid-
based kernel clustering algorithms. To reduce the dominance effect, we apply a
negative shift to the diagonal of the kernel matrix so as to minimise its trace.
This frequently leads to a non-trivial improvement in validation performance. A
summary of the complete validation process is provided in Figure 2.

As mentioned previously, our proposed method is based on the assumption
that regions will be locally homogeneous, which should generally be the case
when an appropriate kernel function is chosen. To maximise homogeneity, we
select a low value for the number of neighbours, with p = 5 being used for our
experiments in the following section. Empirical evidence suggests that a value
of ρ = 4 for the reduction rate substantially reduces the time required for the
validation process, without significantly affecting its accuracy. The selection of ρ
is also related to the maximum number of runs τ , where the computational gains
resulting from prototype reduction allows the use of a larger value to guarantee
the robustness of the overall validation procedure. It must be stressed that, in our
experiments, the use of these “general purpose” parameter values proved to be



Initialisation Phase

• Extract candidate prototypes S, consisting of n neighbourhood centroid vectors.
• Evaluate compactness of candidates in S and sort accordingly in descending order.
• Uniformly select set of n′ reduced prototypes S ′ from the ordered list.
• Construct the n′ × n′ reduced kernel matrix K′ from K using prototypes in S ′.
• Apply zero-trace diagonal shift to K′.

Validation Phase

• Produce τ splits of S ′ into training and test sets.
• For each value of k ∈ [kmin, kmax] :

1. For each split (Xa,Xb):
(a) Apply kernel k-means to training set Xa using kernel K′.
(b) Predict the assignment of documents in Xb based on centroids from clus-

tering of Xa.
(c) Apply kernel k-means to test set Xb using kernel K′.
(d) Evaluate prediction strength and correct for chance as in Eqn. 2.

2. Compute mean corrected prediction strength for k.
• Select k̂ to be the candidate k with the highest mean prediction strength.

Fig. 2. Complete kernel prediction-based validation scheme, with prototype reduction.

effective on a diverse range of datasets, indicating that the proposed validation
method is quite robust to the choice of values for these parameters. This allows
us to focus on the more immediate task of selecting the number of clusters.

4 Empirical Evaluation

In this section we compare the newly proposed validation scheme with prediction-
based techniques operating on the full data. Specifically, we consider four valida-
tion methods. The first involves applying k-means in conjunction with the pre-
diction strength criterion (KM-S). Assessments are performed using a version of
Eqn. 1 corrected for chance agreement, so that we do not require a final value for
k to be manually selected by inspecting the plot of results. The second method
also uses k-means, with assessments made using the partition similarity crite-
rion described in [13] (KM-P). The final two methods are those proposed in this
paper: kernel k-means with prediction strength (KKM-S), and kernel k-means
with prediction strength after prototype reduction (RED-S). Both kernel-based
techniques employ the diagonal shift technique prior to validation to address
the issue of diagonal dominance. For comparison, when applying k-means, we
make use of the standard cosine similarity measure. All clustering algorithms
are initialised by randomly assigning documents to clusters.

The experimental process involved applying the schemes to each dataset
across a reasonable range of values for k (for the data in this paper, we chose
[2, 10]) and comparing their output with the “true” number of natural classes. In
all cases, we used τ = 200 to minimise any variance introduced by subsampling.



4.1 Evaluation on Artificial Data

For our initial experimental evaluation, we required a large number of datasets
to illustrate significant differences between the validation strategies. While many
authors examining stability-based validation techniques have made use of syn-
thetic datasets, generating data that realistically models the distribution of term
frequency values in text data is difficult. As an alternative, we used the 20NG
collection as a source of “artificial” data. We created 84 datasets in total, con-
taining clusters of different proportions which vary in their degree of overlap. A
full discussion on the construction of these datasets is provided in [5].

Table 1. Percentage of correct and top-3 estimations for k̂ on artificial data.

Datasets # KM-S KM-P KKM-S RED-S
First Top 3 First Top 3 First Top 3 First Top 3

Balanced 28 54% 68% 61% 89% 71% 86% 79% 89%
Unbalanced 56 21% 61% 25% 70% 30% 71% 36% 66%
Non-overlapping 42 45% 76% 43% 81% 62% 90% 67% 88%
Overlapping 42 19% 50% 31% 71% 26% 62% 33% 60%

Overall 84 32% 63% 37% 76% 44% 76% 50% 74%

Table 1 summarises the relative performance of the four methods under con-
sideration in terms of the the percentage of datasets on which each method
was successful in identifying k̂. These results indicate that both kernel-based
techniques consistently outperformed those employing the standard k-means al-
gorithm. In these cases, the application of the diagonal shift frequently lead to
significantly higher prediction accuracy. Furthermore, we see that, across the
84 artificial datasets, the reduced validation process (RED-S) generally lead to
more instances where the true number of clusters was correctly identified. This is
particularly apparent for datasets with non-overlapping clusters. The difference
was less pronounced on datasets with overlapping clusters, where object neigh-
bourhoods were generally less homogeneous. When performing the evaluation
on such a large number of datasets, we observed that the speed-up achieved by
working on n

4 reduced prototypes was dramatic.

4.2 Evaluation on Real Data

In our second evaluation, we compare the four validation schemes on eight real-
world corpora that have previously been used in document clustering. For further
details of these datasets, consult [5]. Table 2 shows the results of the comparison,
indicating the top three estimated values for k̂ on the real corpora. In almost all
cases, the reduced clustering method (RED-S) recommended the same value of k
as that chosen when validation was performed on the full kernel matrix (KKM-S).
Only in the case of the reviews dataset, which contains significantly overlapping
clusters, did it fail to rate k̂ among its top three choices. However, the methods
based on k-means also performed poorly on this corpus. It is interesting to note



Table 2. Summary of top-3 estimations for k̂ on real datasets.

Dataset k̂ KM-S KM-P KKM-S RED-S

bbc 5 5, 4, 6 5, 6, 7 5, 6, 4 5, 6, 4
bbcsport 5 4, 5, 3 5, 6, 4 5, 6, 4 5, 4, 6
classic3 3 3, 2, 4 3, 2, 4 3, 4, 5 3, 4, 5
classic 4 3, 5, 2 3, 5, 2 5, 4, 2 5, 4, 2
cstr 4 3, 2, 4 3, 4, 2 3, 4, 5 3, 4, 5
ng3 3 3, 4, 2 3, 4, 5 3, 4, 2 3, 2, 4
ng17-19 3 5, 4, 6 5, 4, 6 5, 4, 3 4, 5, 3
reviews 5 2, 3, 6 2, 8, 9 2, 5, 4 2, 6, 3

that, as with the artificial data, the kernel-based methods generally outperformed
those relying on the standard k-means algorithm. In general, we observed that
using prototype reduction with ρ = 4 consistently afforded a 16-20 fold decrease
in the time required for the validation process.

5 Conclusion

We have proposed a practical approach to stability-based validation suitable for
the task of estimating the number of clusters in large, high-dimensional datasets
such as text corpora. The use of kernel clustering methods allows us to work on
a single kernel matrix rather than repeatedly computing distances in the orig-
inal feature space. Moreover, we have demonstrated that we can significantly
decrease the computational demands of the validation process by employing a
form of prototype reduction to construct a reduced kernel matrix. To ensure
that this does not adversely impact upon the accuracy of the validation process,
we have proposed a density-biased strategy for selecting a set of reduced proto-
types that adequately represent the underlying classes in the data, regardless of
their relative sizes or densities. Notably, the reduction process does not require
that we explicitly represent these new prototypes as feature vectors. Extensive
experimental evaluations have shown this validation process to be effective on
a large number of real and artificial datasets, where it consistently produced
good estimates for the optimal number of clusters, often outperforming existing
methods that are significantly more computationally expensive.

While we have particularly focused on validation in the area of document
clustering, we believe that our approach is applicable for a wide variety of other
domains and kernel functions, where large datasets would otherwise make stabil-
ity analysis unfeasible. We also expect that, while the new prototype reduction
technique has been used in conjunction with prediction-based validation, the
underlying principles may also be useful in improving the efficiency of other
computationally costly learning methods, such as ensemble clustering.
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