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Abstract. Ensemble techniques have been successfully applied in the
context of supervised learning to increase the accuracy and stability of
classification. Recently, analogous techniques for cluster analysis have
been suggested. Research has demonstrated that, by combining a col-
lection of dissimilar clusterings, an improved solution can be obtained.
In this paper, we examine the potential of applying ensemble clustering
techniques with a focus on the area of medical diagnostics. We present
several ensemble generation and integration strategies, and evaluate each
approach on a number of synthetic and real-world datasets. In addition,
we show that diversity among ensemble members is necessary, but not
sufficient to yield an improved solution without the selection of an ap-
propriate integration method.

1 Introduction

Current electronic repositories, especially in medical domains, can contain vast
amounts of information. Knowledge discovery and data mining methods have
been applied to discover patterns and relations in these complex datasets. Of
these, cluster analysis is one of the most important approaches. Such unsuper-
vised learning procedures may be distinguished from other data mining tasks
by the unavailability of predefined class labels that partition data. The goal
of a clustering algorithm is to expose the underlying structure of the data by
uncovering the “natural” groupings of samples.

In the past, cluster analysis in areas such as medical diagnostics has often
involved the repeated execution of a clustering procedure, followed by the man-
ual selection of an individual solution that maximises a user-defined criterion.
However, rather than merely selecting a “winning” partition, recent work has
shown that combining the strengths of an ensemble of clusterings can often yield
better results. Ensemble techniques have been successfully applied in supervised
learning to improve the accuracy and stability of classification algorithms [2, 13].
However, only recently have attempts been made to apply analogous techniques
to domains where class information is unavailable. This research has focused on
exploiting the additional information provided by a collection of diverse cluster-
ings to generate a superior partition of the data [8, 11].

In this paper, we evaluate the potential of applying ensemble techniques
to several problems of medical diagnostics. We discuss a variety of ensemble
generation strategies and integration schemes, and suggest an optimal set of



parameters for each of the datasets under consideration. In addition, we examine
the role that diversity plays in producing a successful ensemble.

In Section 2 we introduce the design issues that must be addressed when
employing ensemble clustering in practise. Empirical results, based on the appli-
cation of these techniques to both medical and synthetic datasets, are provided
in Section 3. Finally, in Section 4 we conclude and suggest possible directions
for future research.

2 Ensemble Design

Ensemble techniques require three key issues to be addressed. Firstly, how does
one generate a collection of base clusterings from which the ensemble is com-
posed? Secondly, how many clusterings are required to give a stable accurate
solution? Thirdly, how does one combine the ensemble members to produce the
final partition? In this section we present an overview of ensemble generation
techniques that have been proposed in the recent literature, and discuss suitable
integration schemes.

2.1 Ensemble Generation

The first phase of ensemble clustering involves constructing a collection of τ
base clustering solutions, denoted C = {C1, . . . , Cτ}, which represent the mem-
bers of the ensemble. This is typically done by repeatedly applying a chosen
clustering algorithm in a manner that leads to diversity among the members.
It has been demonstrated [9] that classifier ensembles are most successful when
constructed from a set of predictors whose errors occur in different parts of the
data space. Diversity is often introduced artificially to improve the output of
an ensemble. For many clustering algorithms, the solutions produced over many
trials will typically be highly similar. Clearly, if all ensemble members agree on
how a dataset should be partitioned, aggregating the clusterings will show no
improvement over any of the constituent members.

Several approaches comparable to those used in supervised learning have
been proposed to introduce artificial instabilities in clustering algorithms. These
generation strategies yield different clusterings of the same data, which can po-
tentially improve the quality and robustness of ensemble output. In this paper,
we empirically examine the following ensemble generation strategies:

– Plain. A simple approach to producing a collection of ensemble members is
to rely solely on some stochastic element in the base clustering algorithm to
provide diversity, such as the selection of random initial clusters in k-means.

– Random-k. The output of clustering algorithms such as standard k-means
is dependent on the initial choice of the number of clusters k. This has
been exploited as a source of ensemble diversity by generating clusterings
using randomly selected values of k from a user-specified interval [8]. In our
experiments, we used the range [2, k + 10], where k is the natural number of
clusters for a given dataset.



– Random-k+. It has been shown that a collection of clusterings generated at
a much higher resolution than the value of k used for the final partition can
provide better results [4]. This generation method is the same as random-k,
but with the interval [k, k + 30].

– Bagging. A common solution to the lack of diversity in classifier ensembles
is to train individual predictors on random subsamples of the data, as in
bagging. An analogous method for ensemble clustering was suggested in [10],
where subsets of the original data are produced by randomly selecting objects
with replacement.

– Random subspacing. Instability can also be introduced to an ensemble by en-
suring that individual members have only a partial view of each data point.
A simple approach that has been used in classifier ensembles to accomplish
this task is random subspacing [5]. This method is also suitable for ensem-
bles in unsupervised learning, where each base clustering is generated on a
randomly selected subset of the original dimensions.

– Random projection. Another effective ensemble creation method was pro-
posed in [12], involving the generation of a set of dissimilar clusterings by
randomly projecting the data onto a lower dimensional subspace. Each en-
semble member is produced by transforming the original n×m dataset to a
reduced set of m′ new dimensions, based on a randomly generated transfor-
mation matrix. In the experiments discussed in this paper, the value of m′

for each ensemble member was randomly selected from the interval [1,m].
– Heterogeneous ensembles. In homogeneous ensembles, members are created

using repeated runs of a single base clustering algorithm. As an alternative,
heterogeneous ensembles may be employed, where diversity is induced by
allowing each base clustering to be generated using a different algorithm.

Another design consideration in this context is the choice of one or more
base clustering algorithms that will be used to produce each ensemble member.
In our experiments, we employed standard k-means, k-medoids and a fast “weak
clustering” technique, where k centroids are chosen at random and the remaining
objects are assigned to the cluster with the nearest centroid. Unlike k-means
and k-medoids, no subsequent attempt is made here to improve the partition,
resulting in highly diverse solutions.

2.2 Ensemble Integration

Once a collection of diverse base clusterings has been generated, these cluster-
ings should be aggregated to produce a single solution. An intuitive ensemble
integration method is to use the information provided by the different cluster-
ings to determine the level of association between each pair of objects in the
dataset [8]. The fundamental assumption here is that objects occurring in the
same “natural” cluster will be frequently assigned to the same cluster across the
base clusterings.

This co-association approach resembles the majority voting schemes com-
monly used in classifier ensembles. For each base clustering in C, a pair of objects



occurring in the same cluster signifies a “vote” for the pair being co-located in
the final partition. The collection of base clusterings can effectively be mapped to
a symmetric n×n co-association matrix M, where each entry Mij represents the
fraction of times that the pair of objects (xi, xj) has been assigned to the same
cluster. Once this intermediate representation has been constructed, a standard
similarity-based clustering algorithm may be applied to M to produce a con-
sensus solution. Algorithms that have been employed for this purpose include
agglomerative clustering [7] and multi-level graph partitioning [11]. In our exper-
iments, we apply the following hierarchical clustering algorithms: single-linkage,
complete-linkage and average-linkage.

3 Experimental Results and Discussion

In order to evaluate the ensemble strategies described in Section 2, experiments
were conducted on two synthetic datasets and six benchmark medical datasets
from the UCI repository [1]. We examined all possible combinations of base
clustering algorithms, generation strategies and integration approaches discussed
previously. For each dataset, the co-association approach was used as an integra-
tion function, where the final number of clusters k was set to the known number
of clusters for the dataset.

3.1 Evaluation of Ensemble Performance

In unsupervised learning, there is no definitive measure of accuracy, making the
task of evaluating any ensemble clustering technique non-trivial. Many cluster-
ing validation measures are parametric and tend to favour bell-shaped distri-
butions, making them inappropriate for the task of ensemble evaluation. An
alternative strategy for cluster validation is to apply the algorithm to a dataset
for which a reference partition or “ground truth” is available, typically in the
form of predefined class labels. External validation indices make use of this in-
formation, unavailable to the clustering algorithm itself, to quantify the level
of agreement between the algorithm’s output and the set of k′ natural classes
C′ = {C ′

1, . . . , C
′
k′} in a reference partition. To evaluate the ensemble strategies

describe previously, we use two such criteria.
One approach to external validation is to count the pairs of objects for which

the clusters and natural classes agree on their co-assignment. A representative
index, the Jaccard coefficient [6], has been commonly applied to assess the sim-
ilarity between binary sets. It is also possible for this measure to be used in
the context of external validation, where the level of agreement of between the
disjoint partitions C′ and C is given by normalising the number of positive agree-
ments

J(C′, C) =
a

a + b + c
(1)

where a denotes the number of pairs of objects with the same label in C′ and
assigned to the same cluster in C, b denotes the number of pairs with the same



Dataset n m k τ Base Generator Linkage Jac. Acc.

2spirals 212 2 2 1000 k-medoids random-k+ single 1.00 1.00
halfrings 600 3 2 500 weak plain single 1.00 1.00

breast 277 51 2 1000 k-means random-k+ complete 0.59 0.76
diabetes 768 8 2 2000 heterogen. plain average 0.55 0.68
heart 270 13 2 2000 weak plain single 0.50 0.60
iris 150 4 3 3000 k-medoids random-k single 0.78 0.89
liver 345 7 2 2000 weak plain single 0.51 0.59
lymph 148 18 4 2000 k-medoids subspacing average 0.48 0.62
thyroid 215 5 3 2000 k-means bagging single 0.63 0.79

Table 1. Details, optimal ensemble parameters, and corresponding external validation
scores for experimental datasets.

label, but in different clusters and c denotes the number of pairs in the same
cluster, but with different class labels. This index produces a result in the range
[0, 1], where a value of 1 indicates that C′ and C are identical.

Another external validation approach is to identify a match between each
cluster and a corresponding natural class in the reference partition. Therefore,
as our second validation index, we consider a simple accuracy score that uses ex-
ternal class information in a manner similar to the mis-assignment rate described
in [12]. By finding the optimal correspondence between a set of annotated class
labels and the clusters in an ensemble partition, a performance measure may be
derived that reflects the proportion of objects that were assigned to the correct
cluster.

A summary of the datasets under consideration is provided in Table 1, to-
gether with optimal ensemble parameters and evaluation results. A minimum
number of ensemble members τ required to give a stable solution is also sug-
gested for each dataset. In experiments performed over 30 trials, ensembles with
the specified parameters consistently yielded results superior to those produced
by single independent runs of individual clustering algorithms. When compared
with the output of a single k-means algorithm, the increase in accuracy values
ranged from 0.002 on the thyroid dataset to 0.453 on the 2spirals dataset. Simi-
lar improvements were also evident in the Jaccard values, with increases ranging
from 0.068 on the thyroid dataset to 0.667 on the 2spirals dataset.

3.2 Evaluation of Ensemble Diversity

As noted previously, it has been observed [3, 13] that the success of a supervised
ensemble depends not only on the presence of a diverse set of base classifiers, but
also on the ability of the meta-level classifier to exploit the resulting diversity.
To assess the relationship between methods for creating ensemble members and
diversity, we examined the amount of disagreement resulting from each of the
generation techniques and base clustering algorithms considered previously. To
quantify diversity, we use a non-pairwise entropy measure based on that proposed



for classifier ensembles in [13]. Formally, the diversity of a collection of base
clusterings C constructed on a dataset of n objects is given by the expression

div ent(C) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

− (Mij log2 Mij + (1−Mij) log2 (1−Mij))

(2)
where Mij represents the fraction of times the objects xi and xj are co-located
in the same cluster.

In each case, we examined the amount of disagreement between 1000 base
clusterings, averaged across the datasets. Figure 1 provides a comparison of the
level of diversity produced by each ensemble generator and the average perfor-
mance of ensembles utilising the technique. In Figure 2 we show a comparison
of the diversity afforded by the three base clustering algorithms. Note that,
while weak-clustering only shows small improvements when averaging across the
datasets, it proved to be the optimal choice for the base algorithm on several
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Fig. 1. Comparison of accuracy and diversity scores for ensemble generation strategies.
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datasets. Since it provides a high level of diversity, it may be used in conjunction
with the “plain” generation strategy, making it less computationally expensive
than the other methods.

Both Figures 1 and 2 indicate that, while combining the output of multiple
clusterers is useful only if there is disagreement between the partitions they
produce, diversity alone is not sufficient to yield an improved solution. Rather,
the choice of a suitable integration strategy appears to greatly dictate the success
of an ensemble. Figure 3 shows that, in our studies, single-linkage gave the
best average performance across the datasets. For practical applications, each of
the integration algorithms could be applied, with the best partition selected by
combining the output of multiple consensus functions [11].

4 Conclusion

In this paper, we discussed ensemble clustering and conducted a series of ex-
periments on synthetic and real-world datasets, examining a range strategies for
generating and integrating the ensembles. We also suggested an optimal con-
figuration for each dataset that resulted in consistent improvements over single
independent runs of individual clustering algorithms.

We have demonstrated that ensemble clustering offers considerable potential
to improve our ability to identify the underlying structure of both artificial and
real datasets in unsupervised scenarios. However, it is apparent from our results
that the ability to exploit this potential relies to a great extent on making several
important design decisions relating to the choice of base clustering algorithm,
generation technique, number of ensemble members and final integration algo-
rithm. In addition, we have observed that diversity among ensemble members is
necessary, but not sufficient to yield an improved solution without the selection
of an effective integration scheme.

Future research could consider other combination strategies that may be
more successful in exploiting diversity. Alternative methods of quantifying di-
versity could also be investigated, such as pairwise or variance-based measures.
An important aspect of ensemble clustering that remains to be explored is the
relationship between the various measures of ensemble performance and the ac-
curacy of its constituent members, which could provide further insight into the
process of selecting appropriate ensemble parameters.
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