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Abstract. A query performance predictor estimates the retrieval effec-
tiveness of a system for a given query. Query performance prediction
(QPP) algorithms are themselves evaluated by measuring the correla-
tion between the predicted effectiveness and the actual effectiveness of a
system for a set of queries. This generally accepted framework for judg-
ing the usefulness of a QPP method includes a number of sources of
variability. For example, “actual effectiveness” can be measured using
different metrics, for different rank cut-offs. The objective of this study
is to identify some of these sources, and investigate how variations in the
framework can affect the outcomes of QPP experiments. We consider
this issue not only in terms of the absolute values of the evaluation met-
rics being reported (e.g., Pearson’s r, Kendall’s τ), but also with respect
to the changes in the ranks of different QPP systems when ordered by
the QPP metric scores. Our experiments reveal that the observed QPP
outcomes can vary considerably, both in terms of the absolute evaluation
metric values and also in terms of the relative system ranks. We report
the combinations of QPP evaluation metric and experimental settings
that are likely to lead to smaller variations in the observed results.

Keywords: Query Performance Prediction, Variations in QPP Results,
QPP Reproducibility

1 Introduction

The problem of query performance prediction (QPP) [5,7,8,9,12,19,16,20,28,29]
has attracted the attention of the Information Retrieval (IR) community over a
number of years. QPP involves estimating the retrieval quality of an IR system.
A diverse range of pre-retrieval (e.g. avgIDF [9]) and post-retrieval approaches
(e.g. WIG [29], NQC [20], UEF [19]) have been proposed for the task of QPP.

The primary use case of QPP can be described as follows: “If we could de-
termine in advance which retrieval approach would work well for a given query,
then hopefully, selecting the appropriate retrieval method on a [per] query basis
could improve the retrieval effectiveness significantly.” [6]. In other words, the
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objective of QPP would be to predict how easy or difficult a given query is for
an IR system. This prediction could either be a categorical label (e.g., easy,
moderate, hard), or a numerical estimate of a standard IR evaluation metric
(which generally lies in [0, 1]).

QPP is a challenging problem, however, and this eventual objective has re-
mained elusive thus far. Given a query and an IR system, well-known QPP
methods simply compute a real-valued score that is meant to be indicative of
the effectiveness of the system for the given query. While this score is typically
not interpreted as a statistical estimate of a specific evaluation metric (e.g. AP
or nDCG [11]), it is expected to be highly correlated with a standard evaluation
measure. Indeed, the quality of a QPP method is usually determined by mea-
suring the correlation between its predicted effectiveness scores and the values
of some standard evaluation metric for a set of queries.

Consider a proposed QPP algorithm P. Given an IR system S, and a set of
queries Q = {Q1, Q2, . . . , Qn}, S is used to retrieve a ranked list Li of documents
for each Qi ∈ Q. For each Li, P computes a predicted effectiveness score φi.
Using available relevance assessments as ground-truth, a standard IR metric
gi is also computed for Li. The correlation between the lists {φ1, φ2, . . . , φn}
and {g1, g2, . . . , gn} is taken to be a measure of how effective P is as a query
performance predictor.

In this study, we analyse the above approach for evaluating and comparing
different QPP methods. We identify the sources of variability within this gener-
ally accepted framework, and show that these variations can lead to differences
in the computed correlations. This, in turn, can lead to differences in

– the absolute values of reported QPP evaluation measures (e.g., the ρ value
for NQC [20] measured with AP@100 as the target metric and LM-Dirichlet
as the retrieval model can be substantially different from that measured with
AP@1000 as the target metric and BM25 as the retrieval model on the same
set of queries); and also in

– the comparative effectiveness of a number of different QPP measures (e.g.,
NQC turns out to be better than WIG with AP@100, whereas WIG outper-
forms NQC when QPP effectiveness is measured using nDCG@10).

Thus, these variations can lead to difficulties in reproducing QPP results, both
at the level of the correlation values being reported, and also in terms of the
relative performance of different competing methods on standard datasets.

Contributions. We conduct a range of experiments to analyze the potential
variations in QPP effectiveness results under different experimental conditions.
Specifically, we consider different combinations of IR metrics and IR models (as
well as rank cut-off values). The experiments described in Section 5 reveal that
the results of QPP depend significantly on these settings. Thus, it may be difficult
to reproduce QPP experiments without a precise description of the experimental
context. While variations in other factors, such as the choice of indexing imple-
mentation and set of pre-processing steps, may also matter, we recommend that
any empirical study of QPP include a precise description of at least the above
experimental settings in order to reduce variations in reported results. More im-
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portantly, our findings suggest that it may even be worthwhile to systematically
revisit reported comparisons between competing QPP approaches.

2 Related Work

Analyzing the sensitivity of reported results on the experiment settings is im-
portant for an empirical discipline such as IR. Buckley and Voorhees while ex-
amining the stability of commonly used evaluation measures in IR [3], reported
observations, such as P@30 has about twice the average error rate as compared
to average precision (AP), or that a stable measurement of P@10 requires an
aggregation of over 50 queries etc.

Previous studies have investigated the sensitivity of relative ranks of IR sys-
tems to the pooling depth used for relevance assessments. It is reported that
smaller samples of the relevance ground-truth obtained with smaller pool depths
usually do not lead to significant changes in the relative performance of IR sys-
tems [2,24,23,4]. In relation to pooling, Buckley et. al. demonstrated that pools
created during the TREC 2005 workshop exhibit a specific bias in favor of rele-
vant documents, specifically contain the title words.

The study in [17] analyzed the sensitivity of variations in embeddding vectors
used for IR models. The work in [1] stressed the importance of reproducibility in
IR research by noting that most of the improvements reported over the years were
not statistically significant over their predecessors. Recently, this observation
has also been reinforced for neural models by arguing that most of the neural
approaches have compared their results against relatively weak baselines [14,22].

Somewhat similar to our investigation of the stability of QPP results relative
to IR models and evaluation metrics, an inconsistency in QPP evaluation with
respect to IR models and variations in query formulation was shown in [18,21].

3 Anatomy of a QPP Evaluation Framework

In this section, we formally define the various components in a standard QPP
evaluation framework. As we demonstrate later, variations in these components
can potentially lead to different experimental outcomes.

Definition 1. The context, C(Q), of a QPP experiment on a query Q, is a 3-
tuple of the form of (θ,S, κ), where κ is a positive integer; the function S :
Q × D 7→ R is a scoring function that computes query-document similarities,
and is used to retrieve L = (D1, . . . , Dκ), the list of κ top-ranked documents
for Q from a collection; and θ : L 7→ [0, 1] is an evaluation metric function
that, given a query Q, a list L of top-ranked documents, and R(Q), the relevance
assessments for Q, outputs a measure of usefulness of L.

Definition 2. The ground-truth or reference value of retrieval effectiveness of
a query Q in relation to a QPP context, C(Q) of Definition 1, is a function of
the form g : C(Q) 7→ [0, 1].
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Definition 3. A QPP method is a function of the form φ(Q,D1, . . . , Dk) 7→
[0, 1], which, given a query Q and a list of top-k retrieved documents4, outputs
a number that is indicative of how relevant the retrieved list is. In other words,
the output of the predictor φ(Q) is some measure of the ground-truth retrieval
effectiveness measure g(C(Q)) from Definition 2.

For example, NQC [20] or WIG [29] compute φ(Q) based on a set of k top-ranked
documents5 and estimating how distinct it is from the rest of the collection. The
intuition behind NQC and WIG is that the higher the distinctiveness, the higher
the likelihood of finding more relevant documents in the retrieved list.

The next step in QPP evaluation is to measure the correlation between the
predicted retrieval effectiveness, φ(Q), and the ground-truth retrieval effective-
ness, g(C(Q)) over a set of benchmark queries Q, using a correlation function,
χ : (Φ,G(C)) 7→ [0, 1], where Φ =

⋃
Q∈Q φ(Q) and G(C) =

⋃
Q∈Q g(C(Q))). Com-

mon choices for χ are Pearson’s r, which computes a correlation between the
values themselves, and rank correlation measures, such as Spearman’s ρ, which
compute the correlation between the ordinals of the members of Φ and G(C).

It is clear from Definitions 1-3 that the QPP outcome, χ(Φ,G)(C), depends
on the context C(Q) used for each Q ∈ Q. Our first objective is to quantify
the relative changes in QPP outcomes χ with changes in the context C(Q). In
other words, we wish to compute the relative changes of the form |χ(Φ,G(Ci))−
χ(Φ,G(Cj))|, for two different instances of QPP contexts Ci = (θi,Si, κi) and
Cj = (θj ,Sj , κj). Thus, our first research question is the following:

RQ1: Do variations in the QPP context, C, in terms of the IR metric
(θ), the IR model (S) and the rank cut-off (κ) used to construct the QPP
evaluation ground-truth, g(C), lead to significant differences in outcome
of a QPP method φ?

Next, instead of computing the relative change in the outcome values (correla-
tions) of individual QPP methods, we seek to measure the relative change in
the rankings (in terms of effectiveness) of a number of different QPP methods.
Formally, given a set of m QPP functions {φ1, . . . , φm}, we compute the effec-
tiveness of each with respect to a number of different QPP contexts, χ(Φi,G(Cj))
for j = 1, . . . , n. The objective is to investigate whether or not the ranking of
QPP systems computed with different contexts is relatively stable. For instance,
if NQC is the best method for a context that used LM-Dirichlet as retrieval
model and AP@100 as evaluation metric, we might wish to investigate whether
it remains the best method for a different QPP context, say, BM25 as the re-
trieval model and nDCG@10 as the evaluation metric. Stated explicitly,

RQ2: Do variations in the QPP context, C, in terms of the IR met-
ric (θ), the IR model (S) and the rank cut-off (κ) used to construct the
QPP evaluation ground-truth, g(C), lead to significant differences in the
relative ranks of different QPP methods φ1, . . . , φm?

4 For pre-retrieval QPP approaches, (D1, . . . , Dk) = ∅.
5 k is a parameter of a post-retrieval QPP method, and can be different from κ, the

number of top documents used for QPP evaluation.
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Collection #Docs Topic Set #Queries Avg.|Q| Avg.#Rel

Disks 4,5 (w/o CR) 528,155 TREC-Robust 249 2.68 71.21

Table 1: Characteristics of the TREC-Robust dataset used in our QPP experiments.
‘Avg.|Q|’ and ‘Avg.#Rel’ denote the average number of terms in a query, and the
average number of relevant documents for a query, respectively.

4 Experimental Setup

To investigate the research questions from the last section, we conduct QPP ex-
periments 6 on a widely-used dataset, the TREC Robust dataset, which consists
of 249 queries. To address RQ1 and RQ2, we first define the set of possible QPP
contexts that we explore in our experiments.

IR evaluation metrics investigated. As choices for the IR evaluation
metric (i.e., the function θ), we consider ‘AP’, ‘nDCG’, ‘P@10’, and ‘recall’. The
evaluation functions explored represent a mixture of both precision- and recall-
oriented metrics. While AP and nDCG address both the aspects of precision and
recall (leaning towards favouring precision), P@10 is a solely precision-oriented
metric. To investigate RQ1, we set the cut-off for AP, nDCG, and recall to 100,
as is common in the literature on QPP [20,25,26].

IR models investigated. IR models represent the second component of a
QPP context as per Definition 1. We explore three such models: a) language
modeling with Jelinek-Mercer smoothing (LMJM) [27,10], b) language modeling
with Dirichlet smoothing (LMDir) [27], and c) Okapi BM25 [15]. The values of
the IR model parameters were chosen after a grid search to optimize the MAP
values on the TREC-Robust queries. Unless otherwise specified, for LMJM, we
used λ = 0.6, the value of k1 and b in BM25 were set to 0.7 and 0.3, respectively,
and the value of the smoothing parameter µ for LMDir was set to 1000.

QPP methods tested. To compare the relative perturbations in prefer-
ential ordering of the QPP systems in terms of the evaluated effectiveness, we
employ a total of seven different QPP methods, as outlined below:
– AvgIDF [9] is a pre-retrieval QPP method that uses the average idfs of the

constituent query terms as the predicted query performance estimate.
– Clarity [7] estimates a relevance model (RLM) [13] distribution of term

weights from a set of top-ranked documents, and then computes its KL
divergence with the collection model.

– WIG [29] uses the aggregated value of the information gain of each docu-
ment in the top-retrieved set as a specificity estimate.

– NQC [20] or normalized query commitment estimates the specificity of a
query as the standard deviation of the RSVs of the top-retrieved documents.

– UEF [19] assumes that information from some top-retrieved sets of docu-
ments are more reliable than others. A high perturbation of a ranked list
after feedback indicates a poor retrieval effectiveness of the initial list. This,

6 Implementation available at: https://github.com/suchanadatta/qpp-eval.git
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in turn, suggests that a smaller confidence should be associated with the
QPP estimate of such a query. Formally,

UEF(Q,φ) = ξ(RM (Q), RM (θQ))φ(Q) (1)

where φ(Q) is the predicted score of a base QPP estimator (e.g. WIG or
NQC), RM (θQ) denotes the re-ranked set of documents post-RLM feedback,
the RLM being estimated on RM (Q) - the top-M documents, and ξ is a
rank correlation coefficient of two ordered sets, for which we specifically use
Pearson’s-ρ, as suggested in [19]. We experiment with three specific instances
of the base estimators, namely Clarity, WIG and NQC for UEF, which we
denote as UEF(Clarity), UEF(WIG) and UEF(NQC), respectively.

Parameters and settings. The standard practice in QPP research is to op-
timize the common hyper-parameter - the number of top documents of post-
retrieval QPP approaches (denoted as k in Definition 3). This hyper-parameter
is tuned via a grid search on a development set of queries and the optimal set-
ting is used to report the performance on a test set. A common approach is to
employ a 50:50 split of the set of queries into development and test sets. This
process is usually repeated 30 times and the average results over the test folds
are reported [20,26,29].

The focus of our research is different, however, in the sense that we seek
to analyze the variations caused due to different settings for constructing the
QPP ground-truth, instead of demonstrating that a particular QPP method
outperforms others. Moreover, an optimal tuning of the hyper-parameters for
each QPP method would require averaging over 30 different experiments for
a single way of defining the QPP context for constructing the ground-truth.
Hence, to keep the number of experiments tractable, we set k = 20, as frequently
prescribed in the literature [7,20,26,29]. Another hyper-parameter, specific to
UEF, is the number of times a subset of size k is sampled from a set of top-K
(K > k) documents. We use a total of 10 random samples of k = 20 documents
from the set of K = 100 top documents, as prescribed in [19].

5 Results

5.1 RQ1: Variations in QPP Evaluations

Table 2 reports the standard deviations in the observed values for the QPP
experiments7. In Tables 2a-d, the value of σ(θ) in each row indicates the standard
deviation of the QPP outcome values observed in that row, i.e., these values
indicate the standard deviation resulting from the use of different IR metrics
for QPP evaluation. Similarly, the value of σ(S) in each column is the standard
deviation of the r, ρ or τ values reported in that column, i.e., this value denotes
the standard deviations in QPP correlations across different IR models. The

7 Tables 2-6 are best viewed in color.
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IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.3795 0.3966 0.3869 0.3311 0.0291
r BM25 0.5006 0.4879 0.4813 0.2525 0.1190

LMDir 0.5208 0.5062 0.4989 0.2851 0.1121

σ(S) 0.0764 0.0587 0.0602 0.0395

LMJM 0.4553 0.4697 0.4663 0.3067 0.0788
ρ BM25 0.4526 0.4700 0.4736 0.2842 0.0911

LMDir 0.4695 0.4848 0.4893 0.3017 0.0902

σ(S) 0.0091 0.0086 0.0118 0.0114

LMJM 0.3175 0.3285 0.3278 0.2193 0.0529
τ BM25 0.3144 0.3162 0.3319 0.2040 0.0589

LMDir 0.3307 0.3407 0.3440 0.2155 0.0617

σ(S) 0.0087 0.0123 0.0084 0.0120

(a) AvgIDF

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.3652 0.4169 0.4503 0.2548 0.0855
r BM25 0.3563 0.4118 0.4495 0.2707 0.0777

LMDir 0.4354 0.4583 0.4854 0.2842 0.0901

σ(S) 0.0433 0.0255 0.0205 0.0147

LMJM 0.4545 0.4843 0.5248 0.2918 0.1022
ρ BM25 0.4618 0.4887 0.5137 0.3308 0.0814

LMDir 0.5024 0.5260 0.5453 0.3340 0.0969

σ(S) 0.0258 0.0229 0.0160 0.0235

LMJM 0.3100 0.3319 0.3657 0.2061 0.0688
τ BM25 0.3170 0.3370 0.3551 0.2374 0.0519

LMDir 0.3539 0.3713 0.3828 0.2379 0.0668

σ(S) 0.0236 0.0214 0.0140 0.0182

(b) NQC

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.4056 0.4071 0.3971 0.3054 0.0491
r BM25 0.4488 0.4563 0.4386 0.3485 0.0502

LMDir 0.4908 0.4798 0.4632 0.3423 0.0688

σ(S) 0.0426 0.0371 0.0334 0.0233

LMJM 0.3716 0.3794 0.3790 0.3120 0.0325
ρ BM25 0.4520 0.4601 0.4505 0.3586 0.0480

LMDir 0.4582 0.4688 0.4667 0.3528 0.0561

σ(S) 0.0483 0.0493 0.0467 0.0254

LMJM 0.2514 0.2567 0.2607 0.2209 0.0181
τ BM25 0.3116 0.3181 0.3125 0.2549 0.0297

LMDir 0.3194 0.3267 0.3259 0.2493 0.0375

σ(S) 0.0372 0.0382 0.0344 0.0182

(c) WIG

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.4746 0.4763 0.4646 0.3573 0.0575
r BM25 0.5386 0.5476 0.5263 0.4182 0.0603

LMDir 0.5693 0.5566 0.5373 0.3971 0.0797

σ(S) 0.0483 0.0440 0.0392 0.0309

LMJM 0.4385 0.4477 0.4472 0.3682 0.0384
ρ BM25 0.5334 0.5429 0.5316 0.4231 0.0567

LMDir 0.5407 0.5532 0.5507 0.4163 0.0662

σ(S) 0.0570 0.0582 0.0551 0.0300

LMJM 0.3017 0.3080 0.3128 0.2651 0.0217
τ BM25 0.3677 0.3754 0.3688 0.3008 0.0351

LMDir 0.3833 0.3920 0.3911 0.2992 0.0450

σ(S) 0.0433 0.0445 0.0303 0.0202

(d) UEF(WIG)

Table 2: Sensitivity of QPP results with variations in the IR evaluation metric (θ)
and the IR model (S) for the QPP methods a) AvgIDF, b) NQC, c) WIG and d)
UEF(WIG). The metrics - AP, nDCG and recall (R) are measured on the top-100
retrieved documents using retrieval models LMJM(λ = 0.6), BM25(k1 = 0.7, b = 0.3)
and LMDir(µ = 1000) respectively. The lowest (highest) standard deviations for each
group of QPP correlation measure are shown in green (red). The lowest and the highest
across different correlation measures are shown bold-faced.

lowest standard deviations for each QPP correlation type are shown bold-faced.
We now discuss the observations that can be made from Table 2.
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Model Metric AP@100 AP@1000 R@10 R@100 R@1000 nDCG@10 nDCG@100 nDCG@1000

LMJM
AP@10

0.4286 0.3333 0.9048 0.2381 -0.1429 1.0000 0.2381 0.3333
BM25 1.0000 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143
LMDir 1.0000 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM
AP@100

0.9048 0.5238 0.8095 0.4286 0.4286 0.8095 0.9048
BM25 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143
LMDir 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM
AP@1000

0.4286 0.8095 0.5238 0.3333 0.9048 1.0000
BM25 0.9048 0.8095 0.3333 0.9048 0.9048 0.8095
LMDir 0.9048 0.8095 0.5238 0.9048 0.9048 0.8095

LMJM
R@10

0.3333 -0.0476 0.9048 0.3333 0.4286
BM25 0.9048 0.4286 1.0000 1.0000 0.7143
LMDir 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM
R@100

0.6190 0.2381 1.0000 0.9048
BM25 0.5238 0.9048 0.9048 0.6190
LMDir 0.5238 0.9048 0.9048 0.6190

LMJM
R@1000

-0.1429 0.6190 0.5238
BM25 0.4286 0.4286 0.5238
LMDir 0.4286 0.4286 0.5238

LMJM
nDCG@10

0.2381 0.3333
BM25 1.0000 0.7143
LMDir 1.0000 0.7143

LMJM
nDCG@100

0.9048
BM25 0.7143
LMDir 0.7143

Table 3: Each cell in the table indicates the correlation (Kendall’s τ) between QPP
systems ranked in order by their evaluated effectiveness (measured with the help of
Pearson’s r for the results of this table) for two different IR metrics corresponding
to the row and the column name of the cell. A total of 7 QPP systems were used in
these experiments, namely AvgIDF, Clarity, WIG, NQC, UEF(Clarity), UEF(WIG)
and UEF(NQC). The lowest correlation value for each group is marked in red, and the
lowest correlations, overall, are bold-faced.

Variations due to IR evaluation metric. The first set of observations,
listed below, is in relation to the absolute differences between two different QPP
evaluations involving two different QPP contexts.

– Substantial absolute differences in the QPP outcomes: Variations in
the IR evaluation metric (i.e., the θ component of a QPP context C(Q) of
Definition 1) while keeping the other two components fixed (i.e., retrieval
model and cut-off) yields considerable absolute differences in the values. As
an example, compare the QPP evaluation of 0.5006 with AP@100 in Table
2a to that of 0.2525 with P@10 obtained with BM25, showing that these
absolute differences can be high.

– Lower variations with τ : In general, we observe that each QPP method
(e.g. NQC, WIG etc.) exhibits considerable differences in measured outcomes
specially between AP@100 and P@10. Moreover, the variations, in general,
are lower when correlation is measured with the help of Kendall’s τ (e.g.,
compare σ(θ) = 0.0181 measured with τ vs. σ(θ) = 0.0491 measured with
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Model Metric AP@100 AP@1000 R@10 R@100 R@1000 nDCG@10 nDCG@100 nDCG@1000

LMJM
AP@10

0.5238 0.3333 0.8095 0.4286 0.2381 0.8095 0.4286 0.3333
BM25 0.9048 0.7143 0.8095 0.8095 0.5238 1.0000 0.9048 0.5238
LMDir 0.9048 0.8095 1.0000 1.0000 0.8095 1.0000 0.9048 0.7143

LMJM
AP@100

0.8095 0.5238 0.9048 0.7143 0.3333 0.9048 0.8095
BM25 0.8095 0.9048 0.9048 0.6190 0.9048 1.0000 0.6190
LMDir 0.9048 0.9048 0.9048 0.7143 0.9048 1.0000 0.8095

LMJM
AP@1000

0.3333 0.9048 0.7143 0.1429 0.9048 1.0000
BM25 0.7143 0.7143 0.6190 0.7143 0.8095 0.8095
LMDir 0.8095 0.8095 0.8095 0.8095 0.9048 0.9048

LMJM
R@10

0.4286 0.2381 0.8095 0.4286 0.3333
BM25 1.0000 0.7143 0.8095 1.0000 0.5238
LMDir 1.0000 0.8095 1.0000 0.9048 0.7143

LMJM
R@100

0.8095 0.2381 1.0000 0.9048
BM25 0.7143 0.8095 0.9048 0.5238
LMDir 0.8095 1.0000 0.9048 0.7143

LMJM
R@1000

0.0476 0.8095 0.7143
BM25 0.5238 0.6190 0.8095
LMDir 0.8095 0.7143 0.9048

LMJM
nDCG@10

0.2381 0.1429
BM25 0.9048 0.5238
LMDir 0.9048 0.7143

LMJM
nDCG@100

0.9048
BM25 0.6190
LMDir 0.8095

Table 4: Results of relative changes in the ranks of QPP systems (similar to Table 3),
the difference being that the QPP outcomes were measured with τ (instead of r).

r on documents retrieved with LMJM). The fact that τ exhibits a lower
variance in QPP evaluation is likely because the correlation is measured in
a pairwise manner (τ being a function of the number of concordant and
discordant pairs). As a result, τ depends only on the agreements between
the true and the predicted order (of query difficulty) between a query pair,
and not on the absolute values of the predicted scores or the reference values
of the IR evaluation metric (as in Pearson’s r or Spearman’s ρ).

– Lower variances with LMJM: Similar to our earlier observation that
τ should be the preferred QPP evaluation measure (with an objective to
minimize the variances in observed results due to changes in IR evaluation
metric), we observe from Table 2 that LMJM, in most cases, result in low
variances in QPP experiment outcomes.

Variations due to IR models. The second set of observations from Table
2 relates to variations in the observed QPP results with respect to variations in
IR models. The standard deviations of these values correspond to column-wise
calculation of standard deviations and are shown as the σ(S) values. Again,
similar to the σ(θ) values, the lowest (highest) values along each row of σ(S) are
colored in green (red) to reflect the situation of lower the better. The best values
across different QPP correlations are bold-faced. We summarise our observations:
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Metric Model LMJM BM25 BM25 BM25 LMDir LMDir LMDir
(0.6) (0.7, 0.3) (1.0, 1.0) (0.3, 0.7) (100) (500) (1000)

AP@100 1.0000 0.9048 1.0000 0.9048 0.9048 0.9048 0.9048
nDCG@100 LMJM 1.0000 0.8095 0.9048 0.9048 0.9048 0.8095 0.8095
R@100 (0.3) 0.9048 0.8095 0.9048 1.0000 1.0000 0.9048 0.9048
P@10 1.0000 0.8095 1.0000 0.8095 0.7143 0.7143 1.0000

AP@100 0.9048 1.0000 0.9048 0.9048 0.9048 0.9048
nDCG@100 LMJM 0.8095 0.9048 0.9048 0.9048 0.8095 0.8095
R@100 (0.6) 0.9048 1.0000 0.9048 0.9048 1.0000 1.0000
P@10 0.8095 1.0000 0.8095 0.7143 0.7143 1.0000

AP@100 0.9048 0.9048 1.0000 1.0000 1.0000
nDCG@100 BM25 0.9048 0.9048 0.9048 1.0000 1.0000
R@100 (0.7, 0.3) 0.9048 0.8095 0.8095 0.9048 0.9048
P@10 0.8095 1.0000 0.9048 0.9048 0.8095

AP@100 0.9048 0.9048 0.9048 0.9048
nDCG@100 BM25 1.0000 1.0000 0.9048 0.9048
R@100 (1.0, 1.0) 0.9048 0.9048 1.0000 1.0000
P@10 0.8095 0.7143 0.7143 1.0000

AP@100 1.0000 1.0000 1.0000
nDCG@100 BM25 1.0000 0.9048 0.9048
R@100 (0.3, 0.7) 1.0000 0.9048 0.9048
P@10 0.9048 0.9048 0.8095

AP@100 1.0000 1.0000
nDCG@100 LMDir 0.9048 0.9048
R@100 (100) 0.9048 0.9048
P@10 0.8095 0.7143

AP@100 1.0000
nDCG@100 LMDir 1.0000
R@100 (500) 1.0000
P@10 0.7143

Table 5: Each cell in the table indicates the correlation (Kendall’s τ) between QPP
systems ranked in order by their evaluated effectiveness (measured with the help of
Pearson’s r for the results presented in this table) for each pair of IR models for 7
different QPP systems. The lowest correlation value for each group is marked in red.
The lowest correlation in the table is bold-faced.

– Lower variations with τ : Similar to the σ(θ) values it is again observed
that mostly measuring QPP outcomes with τ results in the lowest variances
in QPP results. Consequently, for better reproducibility it is more useful to
report results with Kendall’s τ .

– Lower variations in the QPP outcomes: Compared to variations across
IR evaluation metrics, we observe that the variations occurring across IR
models is lower (compare the bold-faced green σ(S) values with those of
σ(θ) ones). This entails that experiments need to put more emphasis on a
precise description of the IR metrics used for QPP evaluation.

– Lack of a consistency on which combination of QPP method with
IR evaluation context yields least the variance: While WIG and
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Metric Model LMJM BM25 BM25 BM25 LMDir LMDir LMDir
(0.6) (0.7, 0.3) (1.0, 1.0) (0.3, 0.7) (100) (500) (1000)

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
nDCG@100 LMJM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
R@100 (0.3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
P@10 0.9048 1.0000 0.9048 0.8095 0.9095 1.0000 1.0000

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
nDCG@100 LMJM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
R@100 (0.6) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
P@10 0.9048 1.0000 0.7143 0.7143 0.9048 0.9048

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000
nDCG@100 BM25 1.0000 1.0000 1.0000 1.0000 1.0000
R@100 (0.7, 0.3) 1.0000 1.0000 1.0000 1.0000 1.0000
P@10 0.9048 0.8095 0.8095 1.0000 1.0000

AP@100 1.0000 1.0000 1.0000 1.0000
nDCG@100 BM25 1.0000 1.0000 1.0000 1.0000
R@100 (1.0, 1.0) 1.0000 1.0000 1.0000 1.0000
P@10 0.7143 0.7143 0.9048 0.9048

AP@100 1.0000 1.0000 1.0000
nDCG@100 BM25 1.0000 1.0000 1.0000
R@100 (0.3, 0.7) 1.0000 1.0000 1.0000
P@10 0.6190 0.8095 0.8095

AP@100 1.0000 1.0000
nDCG@100 LMDir 1.0000 1.0000
R@100 (100) 1.0000 1.0000
P@10 0.8095 0.8095

AP@100 1.0000
nDCG@100 LMDir 1.0000
R@100 (500) 1.0000
P@10 1.0000

Table 6: The difference of this table with Table 5 is that the QPP effectiveness is
measured with Kendall’s τ (instead of Pearson’s r as in Table 5).

UEF(WIG) exhibit lowest variances for a precision oriented evaluation of
ground-truth retrieval effectiveness, for AvgIDF and NQC methods, the least
variations are noted for recall.

5.2 RQ2: Variations in the Relative Ranks of QPP Methods

We now report results in relation to the second research question, where the
intention is to measure how stable are QPP system ranks (ordered by their
evaluated effectiveness measures) for variations in the QPP context.

Variation due to IR metrics. Tables 3 and 4 present the pairwise contin-
gency table for different combinations of IR metrics for three different IR models.
The following observations can be made from the results.
– LMJM leads to the most instability in the relative QPP system

ranks: This behaviour, most likely, can be attributed to the fact that this
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model has a tendency to favour shorter documents in the top-retrieved in
contrast to LMDir or BM25.

– Some evaluation metrics are more sensitive to rank cut-off values:
For instance, the QPP ground-truth measured with Recall@10 yields consid-
erably different results when the ground-truth corresponds to Recall@1000.

– Relative ranks of QPP systems more stable with τ : A comparison
between the values of Tables 3 and 4 reveals that a rank correlation measure
such as τ leads to better stability of QPP experiments than when r is used
to measure the relative effectiveness of QPP models.
Variations due to IR models. Tables 5 and 6 present the pairwise contin-

gency between retrieval similarity scores from different evaluation metrics. For
this set of experiments, the intention is also to investigate the stability of QPP
system ranks with respect to changes, not only to the retrieval model itself, but
also for different parameter settings on the same model, e.g. BM25(0.7,0.3)8 vs.
BM25(1,1). We observe the following:
– Relative ranks of QPP systems are quite stable across IR models:

The correlation values of Tables 5 and 6 are higher than those of Tables 3
and 4, which shows that the QPP experiments are less sensitive to variations
in the set of top documents retrieved by different similarity scores.

– LMJM leads to more instability in the QPP outcomes: LMJM shows
the lowest correlation with other retrieval models. Parameter variations of
an IR model usually lead to relatively stable QPP outcomes. For instance,
see the correlations between LMDir(500) and LMDir(1000).

– Relative ranks of QPP systems are more stable with τ : This ob-
servation (a comparison between the values of Tables 5 and 6) is similar to
the comparison between Tables 3 and 4. However, the differences between
the correlation values are smaller in comparison to those observed between
Tables 3 and 4.

6 Concluding Remarks

We have shown via extensive experiments that QPP outcomes are indeed sen-
sitive to the experimental configuration used. As part of our analysis, we have
found that certain factors, such as variations in the IR effectiveness measures,
has a greater impact in terms of QPP outcomes than other factors, such as
variations in the choice of IR models. An important outcome arising from this
study is that further research on QPP should place greater emphasis on a clear
specification of the experimental setup to enable better reproducibility. In future
we plan to expand our evaluations beyond the TREC Robust dataset. A natural
question that we would like to explore concerns the impact of varying Q (the set
of benchmark queries) on relative QPP outcomes.
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8 Values of k1 and b, respectively, in BM25 [15].
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