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Abstract
Counterfactual explanations have emerged as a
popular solution for the eXplainable AI (XAI)
problem of elucidating the predictions of black-
box deep-learning systems because people easily
understand them, they apply across different prob-
lem domains and seem to be legally compliant.
While 100+ counterfactual methods exist in the lit-
erature, few of these methods have actually been
tested on users (∼7%). Even fewer studies adopt
a user-centered perspective; for instance, asking
people for their counterfactual explanations to
determine their perspective on a “good explana-
tion”. This gap in the literature is addressed here
using a novel methodology that (i) gathers human-
generated counterfactual explanations for misclas-
sified images, in two user studies and, then, (ii)
compares these human-generated explanations to
computationally-generated explanations for the
same misclassifications. Results indicate that hu-
mans do not “minimally edit” images when gen-
erating counterfactual explanations. Instead, they
make larger, “meaningful” edits that better ap-
proximate prototypes in the counterfactual class.
An analysis based on “explanation goals” is pro-
posed to account for this divergence between hu-
man and machine explanations. The implications
of these proposals for future work are discussed.

1. Introduction
As Artificial Intelligence (AI) is increasingly used in every-
day life for high-stakes decision-making, many new roles
have emerged for eXplainable AI (XAI) (Adadi & Berrada,
2018; Doshi-Velez & Kim, 2017; Goodman & Flaxman,
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2017; Sokol & Flach, 2019). For instance, in computer
vision systems, explanations can help to debug black-box
models (e.g., showing why images were misclassified) (Ross
& Doshi-Velez, 2018; Bäuerle et al., 2018), to audit system
safety (e.g., why a self-driving car misidentified a postbox
as a red light (Goyal et al., 2019)), to assess fairness and bias
(e.g., why one person’s face was cropped from an image
over another’s (Birhane et al., 2022)) and, even, to provide
novel domain insights (e.g., identifying mass legions in
digital mammography (Barnett et al., 2021)).

In computer vision, many different strategies have been ad-
vanced to explain model predictions (Lipton, 2016; Adadi
& Berrada, 2018; Guidotti et al., 2018) using, for instance,
saliency maps (Zhou et al., 2016; Selvaraju et al., 2017),
feature importance (Ribeiro et al., 2016; Lundberg & Lee,
2017), prototypes (Kim et al., 2016; Rudin, 2019), and
factual (Sørmo et al., 2005; Keane & Kenny, 2019), counter-
factual (Miller, 2019; Byrne, 2019) or semifactual examples
(Kenny et al., 2021; Aryal & Keane, 2023).

Counterfactual explanations have received significant atten-
tion in the XAI literature, as they provide “what if” explana-
tions that use a contrasting case to show how a prediction
would change if the input features had been different (Goyal
et al., 2019; Guidotti et al., 2019; Miller, 2019; Karimi et al.,
2020; Keane et al., 2021). For image classification tasks,
the counterfactual used typically involves making minimal
changes to the original instance that flip the original deci-
sion. More formally, given a black-box classifier b and I as
some to-be-explained query image with the predicted class
b(I) = y, then I ′ is a candidate counterfactual explanation
when b(I ′) = y′, where y and y′ are contrasting classes (see
e.g., (Goyal et al., 2019)).

The current AI interest in counterfactual methods has been
boosted by philosophical proposals about their centrality
in causality (Lewis, 2013; Woodward, 2005), together with
psychological findings that they are important to people’s
understanding of causes (Miller, 2019; Byrne, 2019; 2007;
Mueller et al., 2019; Lagnado et al., 2013), and legal anal-
yses suggesting they are GDPR compliant (Wachter et al.,
2017). Indeed, there are now 120+ counterfactual methods
in the XAI literature, that claim to generate the plausible
counterfactual explanations people need to understand AI
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systems (Keane et al., 2021; Verma et al., 2021). How-
ever, most of these plausibility claims are based on intuition
rather than hard psychological evidence (Barocas et al.,
2020; Leavitt & Morcos, 2020). As with much of the XAI
literature (Keane & Kenny, 2019; Anjomshoae et al., 2019),
user testing of proposed methods is still relatively scarce.
Recent work has found that only ∼7% of counterfactual
methods specifically were evaluated in this way (Keane
et al., 2021).

Accordingly, in this paper, we advance a novel methodology
to look more closely at how people actually use counterfac-
tuals by asking them to explain images misclassified by an
AI system. We then compare their explanations to those gen-
erated by benchmark counterfactual methods for the same
misclassifications. As these human-generated explanations
are, by definition, plausible they provide one way to assess
the claims made for machine-generated counterfactuals. To
presage our results, we find that in these tasks human- and
machine-generated counterfactuals are markedly different,
that people’s counterfactual explanations rely more on proto-
types from a contrasting class, rather than minimally-edited
instances close to decision boundaries. However, as we shall
see, this does not mean that current XAI methods are nec-
essarily wrong, although it does show that current methods
need to consider the different explanation goals adopted by
users in different explanatory contexts.

1.1. Contributions & Outline of Paper

This paper aims to make significant progress in advancing a
more user-centered perspective on the use of counterfactual
explanations in XAI. We make several novel contributions:

• Providing an up-to-date survey of the main user-study
findings on counterfactual visual explanations in XAI
including a critical analysis that reveals the system-
centered nature of this work.

• Advancing a new user-centered methodology for col-
lecting the counterfactual explanations used by peo-
ple (2000+ counterfactuals), showing how they can be
related to matched explanations from computational,
counterfactual methods.

• Finding the divergences that occur between human
and machine explanations when evaluation metrics for
proximity, representativeness, and prototypicality are
applied, accounting for these divergences using the
notion of “explanation goals”.

2. Current User Testing on Image Datasets
While many counterfactual methods have specifically been
proposed for image datasets (e.g., (Chang et al., 2018; Dhu-
randhar et al., 2018; Goyal et al., 2019; Hendricks et al.,

2018; Vermeire et al., 2022)), only a handful of papers
consider user testing in computer vision domains. Unfor-
tunately, the few papers that do test image-data have sig-
nificant issues with their experimental designs, statistical
analyses and/or the statistical significance of the results
(Goyal et al., 2019; Larasati et al., 2020; Singla et al., 2020;
Zhao et al., 2021). So, there are really only three core pa-
pers that report anything indicative on the topic (Akula et al.,
2020; Cai et al., 2019; Goyal et al., 2019).

Goyal et al. (2019) proposed an influential method, Coun-
terfactual Visual Explanation (CVE), that highlights key
regions in an image (e.g., the beak colour of a bird) as fea-
ture differences behind counterfactual class changes (e.g.,
classifying a bird image as an auklet or a cormorant). They
performed a user study (N=26)1 with three conditions test-
ing a no-explanation control against two explanation condi-
tions (i.e., a non-counterfactual feature-region explanation
and counterfactual-region explanation). They found the
counterfactual-region explanation elicited the highest accu-
racy (77.8%), followed by the feature-region explanation
(74.3%), followed by the no-explanation controls (71.1%),
differences that were only significant at lower-than-usual
confidence levels (i.e., 87% and 51%). So, at best, these
results are indicative rather than conclusive.

Cai et al. (2019) used QuickDraw Doodles (one of the
datasets we use here) to reveal more conclusive results in a
design that elicited better user interaction. They had partici-
pants (N=1,150) generate QuickDraw Doodles of common
objects (e.g., draw a helicopter or an avocado) and then had
a classifier identify the object using a dataset of labelled
drawings. The classifications produced were accompanied
by normative explanations (i.e., similar examples from the
same class, such as other doodles of avocados) or compara-
tive explanations (i.e., counterfactuals or similar example
from other classes, such as doodles of a pear or potato) with
participants being asked to rate how well they understood
the system and their views on the system’s capability. The
results showed that explanations only impacted misclassifi-
cations by the system (i.e., no effects for correct classifica-
tions) and that the example-based, normative explanations
improved people’s understanding and assessments of system
capability. Unfortunately, these effects did not extend to the
counterfactual-based comparative explanations. Cai et al.
considered this failure to find counterfactual effects as being
due to the “surprisingness” of the counterfactual examples.

Finally, Akula et al. (2020) user-tested their CoCoX method,
which adopts a “fault-lines” technique to leverage concepts
in creating counterfactuals. CoCoX was compared against
CEM-PN (Dhurandhar et al., 2018) and CVE (Goyal et al.,
2019), alongside seven other non-counterfactuals methods

1For appropriate statistical power this design requires an
N>100 and confidence levels should be 95% or higher.
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Figure 1. From the QuickDraw data, a query (a “helicopter” misclassified as a “mushroom”) and the explanations generated by four
XAI methods (as four counterfactual “helicopters”) compared to those generated by users. Note, how people add “rotor blades”, a
semantic-feature, whereas the automated methods perform minimal pixel changes. Revise fails to generate an explanation, confirming
findings by Höltgen et al. (2021).

(e.g., LIME, GradCAM, CAM) using two measures: (i)
a measure of people’s agreement with the model’s predic-
tions for test-instances, and (ii) some of the satisfaction
questions proposed by the DARPA group (Hoffman et al.,
2018). The results showed that CoCoX does best on both
measures with CEM-PN and CVE competing for second
positions. Furthermore, these explanation conditions do
markedly better than no-explanation controls (i.e., 30%-
40% better). Although these authors are to be commended
for their user-testing efforts, unfortunately this study has
several serious design flaws. It appears to be designed as
two separate 10-group, between-subjects experiments, one
for ML experts (N=20) and one for non-experts (N=60),
neither of which are appropriately powered (a 10-condition
experiment of this type would require several hundred par-
ticipants). So, for instance, in the expert experiment this
design means that the positive results found for CoCoX are
based on just two participants seeing 5 test-items (i.e., 10
data-points), which could by-chance just happen to provide
positive results. In addition, five test-materials seem too few.
Again, these results on image-datasets are indicative rather
than conclusive.

The user studies reviewed thus far have been overwhelm-
ingly system-centered ones, in which users are cast as pas-
sive recipients of machine-generated explanations. In these
studies, XAI methods are used to generate explanations for
AI-model outputs, that are then fed to people to be evaluated
in different tasks (e.g., for correctness, acceptability, helpful-
ness, trustworthiness). Such studies lack a reality-check on
whether these machine-generated explanations are the ones
that people really require. In contrast, a more user-centered
approach would focus on users, their explanation goals, and
their conceptions of the counterfactual explanations in the
scenario. Arguably, the user-testing of counterfactual XAI
requires a Copernican reversal from being overly system-
centered to being more user-centered (see Appendix).

3. A User-Centered Two-Step Methodology
Our methodology realises a human-centered approach in
two steps: (i) the collection of human-generated explana-
tions, followed by (ii) comparative evaluations of human-
and machine-generated explanations. Two datasets are used:
the benchmark MNIST images of written Arabic numbers
(LeCun, 1998) and QuickDraw Doodle images (Cai et al.,
2019). The latter is arguably more complex than the MNIST
one; notably, it involves images with parts that people can
readily name (e.g., the toppings on a pizza slice). We train
CNNs for each of these datasets and randomly select a sam-
ple of misclassifications made by the models. These misclas-
sified instances are then presented to (i) human participants
in a psychological experiment and (ii) to each counterfactual
method to collect the explanations generated. The two main
steps in the methodology are as follows:

• Human Explanation Collection. People were provided
with a simple editing tool to create their own counter-
factual explanations for misclassified images from the
CNN for each dataset. This collection was done in
two separate experiments, one using the MNIST items
(N=42) and a separate pilot study using the QuickDraw
items (N=5).

• Human-Machine Comparative Evaluation. The same
misclassified images were then presented to each
of four counterfactual methods – Min-Edit, CEM-
PN, CEGP, and Revise – to produce parallel sets
of machine-generated explanations, before doing a
human-machine comparative evaluation of the sets. We
use benchmark evaluation metrics that have previously
been used in computational evaluations of counterfac-
tual methods to assess plausibility claims (i.e., on prox-
imity, representativeness, prototypicality).

This methodology tests whether the explanations generated
by people correspond to those generated by these counter-
factual methods. As such, to the best of our knowledge, this
is the first true user-centered assessment of counterfactual
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Figure 2. Using the MNIST and QuickDraw datasets, two misclassified query images and their corresponding counterfactual explanations
generated by four XAI methods (Min-Edit, , CEM-PN and Revise) and by humans (natural instruction group).

algorithms. In the following sub-sections, we provide more
details on each of the steps in this methodology.

Model Setup: CNN Classifier & Datasets: The to-be-
explained, black-box model was a convolutional neural
network (CNN) trained using a well-known architecture
(Van Looveren & Klaise, 2021). Two image datasets were
used: MNIST (LeCun, 1998) and Google QuickDraw (Cai
et al., 2019). The MNIST dataset contains images of written
numbers, with 70,000 images covering 10 classes (i.e., the
digits 0–9). These images were scaled to [−0.5, 0.5] using
the default training and test sets. Dropout layers were imple-
mented for regularization and to facilitate uncertainty com-
putations, using MC-Dropout (Gal & Ghahramani, 2016).
The CNN was trained with an Adam optimiser for 10 epochs
using a batch size of 256, to achieve an accuracy of 98.93%
on the test set, resulting in 107 to-be-explained images being
misclassified by the model. The Google QuickDraw dataset
contains images gathered from studies that presented people
with common objects, asking them to draw the object in
20 seconds as a “doodle”. It has 50 million doodle images
covering 345 classes (i.e., common object categories such
as “bicycle”). The architecture of the classifier was the same
as that used on the MNIST dataset. This CNN was trained
on a sample of 35,000 images from 5 categories (i.e., “bi-
cycle”, “giraffe”, “helicopter”, “mushroom”, and “pizza”)
using an Adam optimiser for 10 epochs with a batch size
of 256. The model achieved an accuracy of 97.02% on the
test set, resulting in 447 to-be-explained images which were
misclassified.

Materials and Participants: The same misclassifications
were presented to people in the user-tests and to the counter-
factual methods for the comparative study. For the MNIST
dataset, 50 misclassified images were randomly selected
from 107 MNIST images misclassified by the CNN. For the
QuickDraw dataset, 30 misclassified QuickDraw Doodles
were randomly selected from 447 QuickDraw examples mis-

classified by the CNN. Forty-seven participants took part in
the two user studies: the MNIST Study (N=42) and Quick-
Draw Study (N=5). In the MNIST Study, participants were
randomly assigned to two independent groups (see next sec-
tion for details), the Normal and Min-Edit Groups (both
N=21). This sample size was based on a power analysis de-
signed to balance the probability of Type I and Type II errors.
Using GPOWER (Erdfelder et al., 1996), for a two sepa-
rate one-way, t-tests design, with the assumption of a large
effect size for each (d = .0.8), the power analysis showed
that an N=42 for the overall study ensured an alpha of .05
and power of .80. Both studies were reviewed by an ethics
board. Participants were paid an hourly rate of C13.00 in
accordance with the living wage in the jurisdiction.

3.1. The Explanation Collection Step: Task & Tool

For the first step in the methodology, a simple software tool
was developed to present the misclassified images to partic-
ipants. The tool allowed images to be edited via a custom
interactive GUI implemented using the tkinter Python pack-
age. The user data collection was carried out by presenting
the CNN’s misclassifications to people and asking them to
edit the query-image to correct the incorrect prediction (See
Appendix 6.1 for full details). For each misclassification,
they were told the model’s label and its correct label (e.g., 3
and 5, respectively) and that it was misclassified (i.e., “This
is an image of a 5 that was incorrectly labelled by the pro-
gram as being a 3”). They were then invited to edit the
image using the editing tool, to explain how the misclassi-
fication would have to change to be correctly labelled (i.e.,
“Your task is to make changes or edits to the image, to help
the program correctly label the image as a 5”). This task re-
quires people to create a counterfactual instance that shows
how the image would have to change to be correctly classi-
fied. Note, we do not have a feedback-loop in this design
where the users are provided with live classifier probabilities
during editing, as we do not want users to be influenced by
potentially-miscalibrated model scores.
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In the user test involving MNIST, two separate groups of
participants were given slightly different instructions. The
“Normal” group was given the instructions discussed above,
asking participants to “...make changes or edits to help
the program correctly label the image...”. The “Min-Edit”
Group was asked to “...make the smallest possible changes
needed, to help the program correctly label the image...”.
This instructional manipulation was designed to determine
whether instructions to users to act in accordance with a
Min-Edit-type method changed responding relative to the
“normal” non-directive instructions.

3.2. The Comparative-Evaluation Step

For the second step in the methodology, the comparative-
evaluation step, the counterfactual explanations produced
by human and machine were systematically compared using
key evaluation metrics that are commonly used in this area.
The evaluation metrics used reflect the different perspectives
taken on counterfactual goodness and plausibility in the lit-
erature, grouping the metrics by (i) proximity tests compar-
ing distances between query and counterfactual instances
(using L1 and L2 norms), (ii) representativeness tests assess-
ing generated counterfactual instances (using MC-Dropout,
IM1, 10-LOF, and R% Sub), and (iii) prototypicality tests
comparing distances generated counterfactual instances to
class prototypes. Taken together, these evaluations provide
a comprehensive test of divergences/agreements between
human- and machine-generated counterfactuals2.

3.2.1. COUNTERFACTUAL METHODS

Four state-of-the-art counterfactual methods were selected
from the literature on counterfactual XAI (Karimi et al.,
2021; Keane et al., 2021) based on their (i) popularity
as benchmark methods (i.e., according to citations), (ii)
their availability as maintained open-sourced code (e.g., on
GitHub), and (iii) their ability to handle image data.

Inspired by Wachter et al. (2017); Rips (2010) and imple-
mented using Klaise et al. (2019), the Min-Edit method
aims to generate a counterfactual explanation by minimiz-
ing:

(bt(I
′)− pt)

2 + λ∥I − I ′∥1 (1)

The first loss term pushes the predicted class probability
of the candidate counterfactual bt(I ′) towards a target pt,
while the second term minimizes the Manhattan distance
between the query and counterfactual to promote proximate
and sparse solutions, λ, acts as a balancing term.

CEM-PN (Dhurandhar et al., 2018) computes pertinent neg-
atives using an objective function that contains an elastic
net (βL1 + L2) regulariser to select features to alter via
perturbation whilst keeping the perturbations sparse. An

2All code and data available post-review for reproducibility.

autoencoder is leveraged to ensure that the generated expla-
nations lie close to the data manifold through minimizing
the L2 reconstruction error.

Revise (Joshi et al., 2019) relies on a generative model that
is a decoder of a variational autoencoder (VAE) trained on
the training data. The idea is to minimise the function

ℓ(b(G(z’)), t) + λ∥G(z’)− I∥1 (2)

where b is the classifier, t is the target, ℓ is some loss func-
tion, and G is the generative model. To find a z′ that min-
imises the loss, z is initialised to the encoding of the original
input I . Then the gradient of the loss in the latent space is
computed and the algorithm iteratively takes small steps in
that space until the prediction changes to the target. Since
the resulting counterfactual I ′ = G(z′) is produced by the
generative model, it can be dissimilar to I in the pixel space.
This method is implemented using code from Höltgen et al.
(2021), with the recommended hyperparameters of λ = 1
and gradient step δ = 10−5 and the cross entropy loss for ℓ.

CEGP (Van Looveren & Klaise, 2021) generates a coun-
terfactual by minimising a multi-objective loss function
defined by

Loss = cLpred + βL1 + L2 + LAE + Lproto (3)

where the first term encourages the perturbed instance to be-
long to the counterfactual class and the elastic net regularizer
induces sparse and proximal solutions. The reconstruction
error from an auto-encoder is minimised (in LAE) to en-
courage the counterfactual to belong to the training data
distribution. To guide the counterfactual-instance towards
the distribution of the perturbed class, the L2 distance be-
tween it and the counterfactual class prototype is minimised
in the Lproto term. Following the approach of Van Looveren
& Klaise (2021), the encoder from LAE is used to retrieve
class prototypes.

3.2.2. EVALUATION METRICS

Proximity Metrics: The L1 and L2 distance metrics are
used to evaluate counterfactual methods, measuring the
closeness of the counterfactual image, I ′, to the query im-
age, I , where lower distance-scores are assumed to be a
proxy for explanation quality. We compare distance scores
for machine-generated query-counterfactual pairs to the cor-
responding human explanation pairs.

Representativeness Metrics: Monte Carlo Dropout-
Following work by Kenny & Keane (2021) and Delaney
et al. (2021), we leverage MC-dropout to evaluate counter-
factual explanations by estimating the posterior mean of the
predictive distribution MC-Mean (higher is better) and the
posterior standard deviation MC-Std (lower is better). The
intuition is that explanations with lower uncertainty scores
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should be more representative of the counterfactual class
as they are better grounded in the data distribution (Davis
et al., 2020).

R%-Substitutability: Inspired by Samangouei et al. (2018)
and Kenny & Keane (2021), the generated counterfactuals
are used as training data to fit to a 1-NN classifier (in pixel
space) which then predicts the full test-set. For MNIST, as
we are using 50 instances we compare to an MMD Proto-
type 1-NN classifier (Kim et al., 2016) that achieves 75.57%
accuracy on the full MNIST test set, using only 50 pro-
totypical instances and a Euclidean distance function. A
method that achieves half this accuracy would achieve an
R% - Substitutability score of 50%.

IM1: Originally presented by Van Looveren & Klaise
(2021) as an interpretability metric, using the reconstruc-
tion error from a convolutional autoencoder; A lower value
of IM1 implies that the candidate counterfactual image I ′

can be better reconstructed by autoencoders that have seen
instances of the counterfactual class, relative to an autoen-
coder that has seen instances in the original class, implying
that I ′ lies closer to the data manifold of c′.

10-LOF: Following Kanamori et al. (2020), the 10-LOF
algorithm (Breunig et al., 2000), is be used to determine if
a counterfactual explanation is within the data distribution
by computing the local density deviation with respect to its
neighbours in the pixel space. The decision-score metric is
centred on zero, with higher values indicating that a sample
is more within the distribution according to 10-LOF.

Prototypicality Metrics: The MMD-critic (Kim et al.,
2016) method is implemented to compute prototypes by
minimizing the maximum mean discrepancy between the
prototype distribution and the data distribution using a ker-
nel density function. This evaluation aims to determine
whether generated counterfactuals are actually close to pro-
totypes for the counterfactual class. The Grad-Cos met-
ric allows us to determine whether machine-generated and
human-generated counterfactuals are close to prototypes in
the latent space and is briefly described below. Given some
labelled input image IA = (x, y) and a black-box neural
network, bθ(I) that is parameterized by θ, with loss ℓ(I; θ)
and gradient ∇θℓ(I; θ); Grad-Cos (Charpiat et al., 2019) is
a gradient based similarity metric that quantifies the degree
to which the loss will change when a small update to the
model is made using some candidate training instance, IB ,
(e.g., a class prototype). If these two images are very similar
from the neural network’s perspective, this change will be
large. Formally, the cosine similarity of gradients kernel can
be expressed as:

kθ(IA, IB) =
∇θℓ(IA) · ∇θℓ(IB)

∥|∇θℓ(IA)∥|∥|∇θℓ(IB)∥|
(4)

4. Results: Comparative Experiments
Figure 7 shows some representative data on the types of
explanations generated by people and the four methods ex-
amined; even a cursory glance at these items shows that the
human explanations tend to be more complete and identi-
fiable instances of the counterfactual class for the misclas-
sified instances. Next we explore our results in terms of
proximity, representativeness and prototypicality.

Proximity Evaluation: The distance measures for
machine-generated query-explanation pairs diverge signif-
icantly from the human-generated pairs; human counter-
factual explanations are not Min-Edits of queries, instead
humans make large edits to the query when generating coun-
terfactuals (see Figure 3).

For the MNIST data, a statistical analysis, using a one-way
ANOVA, of the distance metrics found a reliable main ef-
fect of Group for L1, F (5,45)= 294.18, p < 0.001, and
L2, F (5, 45) = 291.82, p < 0.001 (see Figure 3a and 3b).
Pairwise comparisons between the groups shows that the
L1 and L2 scores for three methods (Min-Edit, CEM-PN,
CEGP) were all significantly lower than those for humans
(all p < 0.001; using t-tests and a Bonferroni-Holm cor-
rection). In contrast, the Revise method is much closer to
the human explanation; on L1 its distance scores are higher
than human ones (p < 0.001) but on L2 it is not reliably
different from the Normal group (p > .05). Notably, Even
when we explicitly instruct people to act in a Min-Edit way,
they do not Min-Edit the images to the same degree as the
methods do. For the QuickDraw data, the L1 and L2 dis-
tance in the pixel space, show essentially the same patterns
between groups; a one-way ANOVA found a reliable main
effect of Group for L1, F (3,26) = 107.03, p < 0.001, and
L2, F (3, 26) = 123.62, p < 0.001 (see Figure 3c and 3d).

Representativeness Evaluation: Counterfactual expla-
nations should be within distribution and, to some degree,
representative of the counterfactual class. But, how do the
within-distribution properties of human explanations com-
pare to those of machine explanations?

The Monte Carlo Dropout (MC-Mean, MC-Std) (Gal &
Ghahramani, 2016) metric which measures the uncertainty
in a model’s prediction confidence (Kenny & Keane, 2021;
Delaney et al., 2021; Bhatt et al., 2021), shows that hu-
man counterfactuals are the least uncertain with respect to
the model’s classification (Kenny & Keane, 2021; Gal &
Ghahramani, 2016), whereas all four XAI methods have
lower certainty scores. Notably, Revise, which was closest
to the human counterfactuals on distance, diverges more
than any other method on this measure, indicating that its
explanations are distributionally quite different to the human
ones. In short, humans do not create visual explanations that
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Figure 3. Proximity Evaluations. Mean L1 and L2 distance scores for query-explanation pairs produced by four counterfactual XAI
methods – Min-Edit, CEM-PN, , Revise – (left of the dotted red line) compared to the human counterfactuals (right of dotted red line), for
(a, b) MNIST and (c, d) QuickDraw datasets (normal instruction group). Error bars show standard error of the mean.*Note, Revise often
failed to generate counterfactuals for the QuickDraw data (a coverage deficit also found by Höltgen et al. (2021)); so, Revise’s results only
reflect instances where explanations were found, making its quite poor performance look better.

Table 1. Representativeness Evaluations. Five out-of-distribution measures for the XAI methods (Min-Edit, CEGP, CEM-PN and Revise)
compared to human responses for A - MNIST and B - QuickDraw (bold indicates best score in each case).

MC-Mean MC-Std IM1 10-LOF R%-Sub

CF-Method A B A B A B A B A B

Min-Edit 0.62 0.34 0.33 0.21 1.01 1.06 0.04 0.00 42.72 41.29
CEM-PN 0.59 0.19 0.33 0.13 1.00 1.10 0.04 0.00 43.17 41.46
CEGP 0.66 0.31 0.30 0.21 1.01 1.03 0.08 0.06 49.25 45.85
Revise 0.33 0.16 0.23 0.03 1.04 0.99 0.32 0.12 45.76 49.42
Human 0.94 0.71 0.11 0.15 0.98 1.02 0.06 0.05 50.05 55.98

are close to the model’s decision boundary (i.e., ones with
high aleatoric uncertainty (Schut et al., 2021)). Furthermore,
the R%-sub metric (Samangouei et al., 2018) shows that
human counterfactuals are more prototypical with respect
to the counterfactual class; they have the highest R%-sub
scores showing that they are the most representative of the
counterfactual class. Finally, the IM1 and LOF metrics

confirm this interpretation. IM1 shows that human counter-
factuals lie closest to the data manifold of the counterfactual
class when compared to the four XAI methods for MNIST.
10-LOF, which is a proximity based out-of-distribution mea-
sure in the pixel space, demonstrates that human explana-
tions are more well grounded in the counterfactual class
relative to min-edit counterfactuals.
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Prototypicality Evaluation: Human explanations reveal
a tendency to produce counterfactuals that can be distant
from the query, while being close to the prototype(s) of the
counterfactual class. For instance, people’s counterfactual
explanations for misclassified QuickDraw Doodles show
semantic-features being added, informed by prototypes in
the counterfactual class (i.e., latent features in many CNNs
(Kim et al., 2018; Ghorbani et al., 2019; Chen et al., 2020;
Zhang et al., 2021)). Figure 1 shows an image of a “heli-
copter” that was misclassified as a “mushroom”, to which
people add “rotor blades” to identify it as a “helicopter”. In
contrast, the XAI methods make small changes to a few pix-
els that imperceptibly modify the image. In the latent space,
human counterfactuals are more similar than all four XAI
methods, to the prototypes of the counterfactual class (even
when the method purports to use prototypes – See Appendix
for details). These results confirm the intuition that people
modify the semantic-features of images in producing coun-
terfactual explanations, shaping these explanations relative
to the prototypes of the counterfactual class.

5. Concluding Remarks
Recently, many researchers have argued for a more user-
centered explainable AI requiring better tests from a user
perspective (Miller, 2019; Barocas et al., 2020; Miller,
2023; Lim et al., 2019). In response, we have advanced
a new user-centered paradigm where users generate expla-
nations in canonical tasks with a view to comparing them
to those generated by counterfactual XAI methods. Our
main finding is that human- and machine-generated coun-
terfactuals are markedly different. In the tasks considered,
people’s counterfactual explanations were shown to rely
more on prototypes from a contrasting class, rather than on
minimally-edited instances near decision boundaries. Lewis
(2013) argued that counterfactuals were the closest possible,
minimally-different world to the current one. The present
work shows that people compute those minimal differences
in a semantic space, rather than in a pixel space, and do so
with a view to representative instances of the counterfactual
world, rather than the current one, echoing previous findings
in cognitive psychology (Lucas & Kemp, 2015; Quillien &
Lucas, 2023). However, we believe that an analysis of these
results with respect to “explanation-goals” yields a better
interpretation of their significance.

Resolving the Divergence between Human & Machine
Counterfactuals: The present studies present us with a
puzzling divergence between the counterfactual explana-
tions people propose and those computed by counterfactual
XAI methods. We believe this divergence can be accounted
for thorough analysis of “explanation goals”. Conversa-
tional theories (Achinstein, 1983; Bromberger, 1965; 1966;
Van Fraassen et al., 1980) cast the explanation process as a

communicative act between agents with specific explanation
goals. These goals shape how an explanation is generated,
evaluated, and interpreted by those agents (Sørmo et al.,
2005). Most, if not all, current counterfactual XAI meth-
ods implicitly assume a task-situation involving a “class-
discrimination” explanation goal, in which the counterfac-
tual is designed to communicate discriminating differences
between instances; hence, the methods compute minimal
(edit) changes to explain things. However, when we pose
the same task-situation to people, they seem to implicitly
assume a “class-distribution” goal, in which the counterfac-
tual is designed to communicate broad knowledge about
classes in the domain; hence, people leverage their knowl-
edge of prototypes to explain things. As such, the present
results do not show that that people are right and current
counterfactual methods are wrong. Rather, they show us that
XAI-methods and people diverge in their (implicit) choice of
explanation goals adopted in the task context. Both choices
are appropriate in some situations. There are scenarios in
which discriminative-explanations are appropriate (e.g., in
the classic recourse scenarios). However, there are also
situations where distributional-explanations are appropriate
(e.g., in learning about domains).

Limitations & Future Directions: The current studies
were conducted using grey scale images of handwritten num-
bers (MNIST) and hand-drawn everyday objects (Quick-
Draw), rather than on other commonly-used RGB-image
datasets (e.g., CIFAR and ImageNet). One promising line
of work for this would be to develop a new editing tool
by using text annotations from users in combination with
recently developed generative models (Ramesh et al., 2022)
to create realistic counterfactual edits. The MNIST study
reported here was carefully designed using an appropriate
power analysis to test people’s generation of explanations.
The QuickDraw pilot study could also be extended to mirror
this. We envision that future algorithmic developments in
counterfactual XAI should account for explanation goals,
given the diversity of different task applications in AI.

Closing Comments: Our work promotes a user-centered
approach to counterfactual XAI, evaluating the differences
between explanations generated by people and machines
using popular benchmark comparison metrics from the coun-
terfactual literature. Although the results reveal a marked
divergence between the explanations produced by humans
and machines, this divergence can be resolved by an analysis
of the “explanation goals” used in either context. Computa-
tional techniques adopt a “class-discrimination goal”, mak-
ing small edits to the query, whereas humans adopt a “class-
distribution goal”, making large, semantically-meaningful
edits to the query guided by prototypes in the counterfactual
class. As such, these findings and the analyses advanced
point to new avenues for future research.
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6. Appendix
6.1. User Study – Additional Information

Editing Tool: The software tool was developed that al-
lowed images to be edited via a custom interactive GUI
implemented using the tkinter Python package (see Figure
4 for a screenshot). The presented image was up-sampled
to a 600× 600 canvas where it could be edited and the final
image was down-sampled to the original 28× 28 size. Par-
ticipants had the option to add pixels, remove pixels or reset
the image to its original form if they made a mistake. A
log of the stroke information carried out by the user and the
final edited image for each presented image was recorded
and saved for later analysis.

In both studies, after receiving the instructions and practice
trials, participants proceeded through all the presented im-
ages at their own pace. The presented set of images was
randomly shuffled anew for each participant to control for
possible order effects. Each experimental session took ∼15-
30 minutes (typically, ∼20 min in MNIST Study and ∼15
min in QuickDraw Study), including the final de-briefing on
the rationale for the study. The logs of participant’s stroke
information and final edited image for each item were all
recorded and saved after being suitably anonymised.

Figure 4. Screenshot of the editing tool used for collecting user
explanations, showing a misclassified MNIST image of a “5”,
along with the instructions to participants. The interface allows
pixels to be added or removed using the cursor as a pen or eraser,
after clicking the “Draw” or “Erase” buttons, respectively. The
“Reset” button removes all edits, resetting the image to its original
form.

Response Post-Processing – User Tests: In each of the
user studies, for a given misclassified item a response from
each participant in the experiment is recorded; so, for
MNIST experiment we have 42 explanations for the first
misclassification, 42 for the second and so on. So, overall
2,250 human explanations were gathered: 42 people x 50
items for the MNIST experiment and 5 people x 30 items
for the QuickDraw experiment. However, for each of the
counterfactual methods we have just one explanation per
misclassification; so, 320 explanations (80 items x 4 meth-
ods). So, to compare the human and machine explanations
in a one-to-one fashion, we computed the medoid of human
responses to a given item. This group-level response was
then used in the explanation-to-explanation comparison for
each of the metrics.
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6.2. Prototype Evaluations: Prototypes & Similarity

To determine the closeness of generated counterfactuals to
the prototype(s) of the counterfactual class, MMD-Critic
(Kim et al., 2016) was used to create prototypes for the class
and then Grad-Cos was used to measure the latent similarity
between explanations and prototypes in order to determine if
explanations generated by humans are more similar to class
prototypes relative to explanations that are automatically
generated. MMD-critic is briefly described below.

Prototype Retrieval – MMD-Critic: Introduced by Kim
et al. (Kim et al., 2016), this approach computes prototypes
by minimizing the maximum mean discrepancy between
the prototype distribution and the data distribution. These
densities are estimated using a kernel density function, k.
Following (Molnar, 2020; Kim et al., 2016), let m represent
the number of individual prototypes z and n represent the
number of data-points x in the dataset. Then the MMD2

can be represented by:

MMD2 =
1

m2

m∑
i,j=1

k(zi, zj)

− 2

mn

m,n∑
i,j=1

k(zi, xj)

+
1

n2

n∑
i,j=1

k(xi, xj)

(5)

The first term calculates the average proximity of the proto-
types to each other, while the last term calculates the average
proximity of the data-points to each other. The middle term
calculates the average proximity between the prototypes and
the other data-points (multiplied by 2). In our implementa-
tion we use a standard radial basis function as our choice
for the kernel k, defined by:

k(x, x′) = exp (−γ∥|x− x′∥|2) (6)

The MMD2 measure, kernel function and greedy search
are combined in an algorithm to find prototypes (Molnar,
2020). Starting with an empty list of prototypes, each point
in the class are evaluated using MMD2, and the point that
minimizes MMD2 to the largest degree is added to the list.



Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ

Min-Edit CEM-PN CEGP Revise Human
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Gr
ad

-C
os

MNIST: Mean Grad-Cos Similarity between Candidate Counterfactual 
 and Prototypical Instances in the Counterfactual Class

(a) MNIST

Min-Edit CEM-PN GEGP Revise Human
0.0

0.1

0.2

0.3

0.4

0.5
Gr

ad
-C

os

Quickdraw: Mean Grad-Cos Similarity between Candidate Counterfactual 
 and Prototypical Instances in the Counterfactual Class

(b) QuickDraw

Figure 5. Prototype Evaluations Results. Mean Grad-Cos Similarity scores for counterfactual-prototype and query-prototype pairs
(prototypes retrieved using MMD-critic) from XAI methods compared to the human counterfactuals, for (a) MNIST and (b) QuickDraw
datasets (Error bars show standard error of the mean).
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Figure 6. System-centered user-tests of counterfactual XAI present people with the outputs from an AI-plus-XAI method to evaluate
them in different ways. User-centered tests try to capture the user’s perspective on explanation. In our methodology, an XAI-method’s
explanation of model outputs (e.g., misclassified images) are evaluated by comparing them to human explanations of the same model
outputs (e.g., misclassifications). Most current user-tests of counterfactual XAI are system- rather than user-centred.
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Figure 7. Additional Results Using the MNIST and QuickDraw datasets, misclassified query images and their corresponding counterfactual
explanations generated by four XAI methods (Min-Edit, CEGP, CEM-PN and Revise) and by humans (natural instruction group).


