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13.1. Introduction

In recent years, following the significant breakthroughs in Deep Learning, the Artifi-
cial Intelligence (AI) community has turned to the problem of eXplainable AI (XAI),
mainly because of rising public concern about the use of these technologies in people’s
everyday lives, jobs, and leisure time (Ala-Pietilä and Smuha, 2021). Indeed, for the
research community, there is very real worry that issues of interpretability, trust, and
ethical usage will limit or block the deployment of these AI technologies. For these
reasons, the DARPA XAI program has specifically targeted XAI research with a strong
user testing emphasis to overcome such impasses (Gunning and Aha, 2019). At the
same time, governments have also woken up to the need for regulation in this space; for
example, the European Commission has established the High Level Expert Group on
Artificial Intelligence to define guidelines for Trustworthy AI in the European Union,
as a precursor to further legal steps (Ala-Pietilä and Smuha, 2021). Indeed, in the EU,
GDPR places requirements on the need to explain automated decisions (Wachter et al.,
2017). This wave of activity around the notion of explainability and XAI is also spawn-
ing new subareas of research; for example, XAI methods to support users in reversing
algorithmic decisions – so-called algorithmic recourse – have emerged as a vibrant research
topic (Karimi et al., 2020b). In this chapter, we present some recent solutions to the
XAI problem using several variants of post-hoc explanations-by-example (Kenny et al.,
2020; Keane et al., 2021). In the remainder of this introduction, we first consider the
concept of “explanation” in XAI before outlining some of the different strategies ex-
plored in the literature. Then, in the remaining sections of the chapter we present new
empirical evidence on how these different methods perform in dealing with image and
time series datasets, along with reviewing what has been learned from user studies on
their application.

13.1.1 What is an explanation? Pre-hoc versus post-hoc
One of the key problems facing XAI research is that the notion of “explanation” is not
well defined and is still debated in Philosophy and Psychology (Sørmo et al., 2005).
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One response to this issue in XAI has been to use terms other than “explanation”,
such as “interpretability,” “transparency,” and “simulatability”; but these renamings do
not circumvent the fundamental problem that “explanation” is a slippery, hard-to-define
concept. However, one broad distinction from philosophy that has gained general accep-
tance is the distinction between “explanation proper” and “explanation as justification.”
Sørmo et al. (2005) cast this philosophical distinction as the difference between explain-
ing how the system reached some answer (what they call transparency) and explaining
why the system produced a given answer (post-hoc justification). Lipton (2018) echoes
these ideas with a similar distinction between transparency (i.e., “How does the model
work?”; what we call pre-hoc explanation) and post-hoc explanation (i.e., “What else
can the model tell me?”).

Pre-hoc explanations promise to, in some sense, explain the Deep Learning model
directly. So, the user can understand how the whole model works given some repre-
sentation of it (Frosst and Hinton, 2017) via simplified model that “behaves similarly to
the original model, but in a way that is easier to explain” (Lipton, 2018) (e.g., Frosst
and Hinton (2017)). The claim here is that the model is inherently “transparent,” “sim-
ulatable,” or “interpretable” by virtue of how it runs. Rudin (2019) argues that this use
of inherently transparent models is the only appropriate solution to XAI in sensitive,
high-stakes domains; pointing to her own use of prototypes (Chen et al., 2018). How-
ever, the literature is not replete with many examples of this type of solution; indeed,
the idea that one could “show” the inner workings of a Deep Learner to an “ordi-
nary” end-user seems somewhat implausible as a proposition. Furthermore, many of
the solutions which claim to be pre-hoc “transparent machine learning” are, actually,
post-hoc solutions. For example, some model “simplifications” are really mappings of
the Deep Learner into another modeling method (e.g., decision trees), what some call
proxy or surrogate models (Gilpin et al., 2018), rather than direct renderings of the original
neural network. As such, most of the XAI literature really concerns itself with post-hoc
methods.

Post-hoc explanations provide after-the-fact justifications for what the Deep Learner
has done. The key idea here is that one can explain/justify how a model reached some
decision with reference to other information (e.g., “the model did this because it used
such-and-such data”). This approach involves a broad spectrum of approaches involving
many different techniques that try to provide evidential justifications for why a black-
box model did what it did. Almost by definition, this means that these approaches are
approximate; often, they do not directly show what was done to reach a prediction, but
provide some basis for understanding why a prediction arose. There are probably four
main approaches taken in the post-hoc explanation sphere: proxy-models, example-
based explanations, natural language accounts and visualizations (see also Lipton (2018);
Keane et al. (2021); Kenny et al. (2020)).
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13.1.2 Post-hoc explanations: four approaches
The four main solutions to post-hoc explanation – proxy-models, example-based expla-
nations, natural language accounts and visualizations – present quite different alternatives
to the XAI problem. Here, we sketch each in turn, before going on to consider
example-based explanations in some detail.

Proxy-model solutions provide some post-hoc mapping of some aspect of the Deep
Learner into a “more transparent” modeling framework; for example, the Deep Learner
is rerendered as a decision tree or a rule-based system that is said to explain its function-
ing. In general, these solutions assume that the proxy model is inherently transparent,
as an article of faith without any substantiation for whether end-users actually find the
proxy model comprehensible (Doshi-Velez and Kim, 2017). As Lipton (2018) points
out “neither linear models, rule-based systems, nor decision trees are intrinsically inter-
pretable... Sufficiently high-dimensional models, unwieldy rule lists, and deep decision
trees could all be considered less transparent than comparatively compact neural net-
works.” This means that to some degree, the jury is still out on the status and success
of these proxy-model approaches. However, to be positive, there are now more user
studies on people’s understanding of rule-based explanations being carried out (Lage et
al., 2019).

Example-based explanations arise out of long-standing case-based reasoning ap-
proaches to explanation (Sørmo et al., 2005; Nugent et al., 2009), where a case/prece-
dent/example is used to provide a justification for a prediction (e.g., my house is valued
at $400k because it is very similar to your house which sold for $400k). However, tradi-
tionally, example-based explanations were only used for k-NNs with only a handful of
papers attempting to extend them to explaining multilayer perceptrons (Caruana et al.,
1999; Shin and Park, 1999). More recent work has extended example-based explanation
to Deep Learning models for classification, regression and natural language processing
(Kenny and Keane, 2019, 2021a). The latter have been described as twin-systems, in
which a black-box model is paired with a white-box model with the functionality of
the former being mapped into the latter to find explanations (Kenny et al., 2021a; Kenny
and Keane, 2021a). This twinning notion is very similar to the proxy-model idea, but
subtly differs in that, typically, the white-box’s function is purely explanatory; its sole
role is to elucidate the predictions of the black box. In proxy-model approaches, the
proxy often takes over the predictive role (as well as having an explanatory one), with
evaluations being directed at establishing the fidelity of the proxy’s predictions to those
of the black box (see, e.g., White and d’Avila Garcez (2019); Guidotti et al. (2019)).
A second major development in this example-based approach has been the proposal
of different types of example-based explanations. Traditional case-based explanations
use factual examples; they use instances from the dataset to directly explain a prediction
(e.g., the house-price example). Recently, researchers have proposed counterfactual and
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semifactual example-based explanations, opening up whole new vistas for post-hoc ex-
planations (see Section 13.1.3).

Natural language explanations are a third, post-hoc option reflecting a long history of
attempts to turn AI model predictions or decision traces into natural language descrip-
tions to be read by end-users (see, e.g., Camburu et al. (2020); Shortliffe et al. (1975);
Nugent et al. (2009)). Traditionally, this approach tries to take some aspect of the model
– such as its rules or outputs – and render it in a natural language description, on the
assumption that users will then find the models workings more comprehensible. Ob-
viously, this natural language processing step does not in itself guarantee that such an
explanation will work, as it will also depend on what is being explained.

Visualizations are the final post-hoc XAI solution, one that has received significant
attention in the literature. These methods attempt to surface significant aspects of a
Deep Learner through visualizations using saliency maps, heat maps, and feature or class
activation maps (Erhan et al., 2009; Simonyan et al., 2013; Zeiler and Fergus, 2014;
Hohman et al., 2018; Zhou et al., 2016). As with the natural language solution, these
methods to some extent depend on what is being highlighted for comprehension by
end users.

13.1.3 Example-based explanations: factual, counterfactual, and
semifactual

The present chapter focuses on recent advances in post-hoc example-based explanations
and on the variety of solutions arising in this literature. Recently, the XAI literature has
rapidly moved from traditional factual, example or case-based explanations to coun-
terfactual (Byrne, 2019; Miller, 2019; Karimi et al., 2020a; Keane et al., 2021) and
semifactual explanations (Kenny and Keane, 2021b). Here, we briefly sketch the ideas
behind these explanation strategies, largely describing them using tabular-data content
(see later sections for image and time series examples).

Factual Explanations. These explanations are the case-based examples discussed in
hundreds, if not thousands of case-based reasoning (CBR) papers (Leake and McSherry,
2005; Sørmo et al., 2005); except that now the example-cases to explain Deep Learners
are retrieved based on extracted feature-weighs from the Deep Learner (Kenny and
Keane, 2019, 2021a). Imagine a SmartAg system, where a Deep Learning model for
predicting crop growth tells a farmer that “in the next week, the grass yield on their
farm will be 23 tons,” and the farmer asks “Why?” (Kenny et al., 2021b). Using these
techniques, a factual explanation could be found from historical instances in the dataset
for this farm, to give the explanation “Well, next week is like week-12, two years ago,
in terms of the weather and your use of fertilizer and that week yielded 22.5 tons of
grass.” This explanatory factual case comes from finding the nearest neighbor in the
dataset (also known as the Deep Learner’s training data) based on analyzing the feature
weights contributing to the prediction made.
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Counterfactual explanations. This explanation strategy is quite different to the factual
option. It tells the end-user about how things would have to change for the model’s
predictions to change (hence, it can be used for algorithmic recourse; Karimi et al.
(2020c)). Imagine the farmer thinks that the crop yield should be higher than 23 tons
and asks, “Why not higher?”; now, the AI could provide advice for getting a better
yield in the future, by explaining that “If you doubled your fertilizer use, then you
could achieve a higher yield of 28 tons.” So, unlike factual explanations which tend
to merely justify the status quo, counterfactuals can provide a basis for actions that can
change future outcomes (see, e.g., Byrne (2019); Miller (2019) on the psychology of
counterfactual explanations for XAI).

Semifactual explanations. Finally, semifactual explanations also have the potential to
guide future actions. Imagine again, the farmer thinks that the crop yield should be
higher than 23 tons and asks, “Why not higher?”; now, the AI could provide a semi-
factual “even-if ” explanation that is also quite informative saying “Even if you doubled
your fertilizer use, the yield would still be 23 tons.” In this case, the farmer is po-
tentially warned-off over-fertilizing and polluting the environment. Semifactuals have
been examined occasionally in psychology (McCloy and Byrne, 2002), but hardly at all
in AI (see discussion of a-fortiori reasoning for one notable exception in Nugent et al.
(2009)).

13.1.4 Outline of chapter
In the remainder of this chapter, we focus on the different solutions we have found in the
post-hoc example-based explanations across image and time series datasets. Most current
research focuses on tabular datasets, but in this chapter we consider the, arguably more
difficult, problem of XAI for image and time series datasets. This work introduces a suite
of novel XAI methods for these domains, that have been supported by some user studies
(though more are needed; see Keane et al. (2021)). The next three sections consider
these different example-based solutions – factual, counterfactual, and semifactual – in
which we describe the methods proposed, present some indicative results, and review
the results from user testing. Section 13.2 considers factual example-based explanations
for images and time series, before examining counterfactual and semifactual solutions
for image data (Section 13.3) and for time series (Section 13.4). The latter two sections
present novel extensions to our previous work. Finally, we conclude with a general
discussion on the future directions for XAI and explainability in these domains.

13.2. Post-hoc explanations using factual examples

As we saw earlier, the use of factual explanations for neural networks emerged over 20
years ago in CBR, when the feature-weights of multilayered perceptrons (MLPs) were
mapped into k-NN models to find nearest neighbors for a target query, to be used as
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example-based explanations (Caruana et al. (1999); Shin and Park (1999); see Keane
and Kenny (2019) for a review). More recent work has extended this approach to con-
volutional neural networks (CNNs) exploring tabular, image, and time series datasets,
though the specific solutions proposed are somewhat different. These techniques share
the common idea that example-based explanations can be found using nearest neighbors
to explain the predictions of a novel, unseen test instances.

13.2.1 Factual explanations of images
Kenny and Keane (2019, 2021a) extended factual explanations for tabular data involving
MLPs to image datasets and generalized the approach – the twin-systems framework
– to Deep Learners (mainly, CNNs). This approach relies on twinning the Neural
Network model with a k-NN, where the feature-weights for a test-instance in the
Neural Network are applied to a k-NN model, operating over the same dataset, to
retrieve factual explanations (see Figs. 13.1, 13.2, and 13.3); notably, the feature-weights
are based on feature contributions to the local prediction made.

The twin-systems framework proposes that an ANN may be abstracted in its entirety
into a single proxy CBR system that mimics the ANN’s predictive logic. Most methods
for post-hoc explanation-by-example use feature activations to locate similar training
examples to a test instance (also known as neuron activations in the ANN) (Papernot
and McDaniel, 2018; Jeyakumar et al., 2020). In contrast, the twin-systems solution
uses feature contributions, which weight these neuron activations by their connection
weights to the predicted class (the so-called COLE Hadamard Product, C-HP, method).
This approach has the effect of finding nearest neighbors that (i) are predicted to be in
the same class as the test case, and (ii) have similarly-important features used in the
prediction. This solution has a notable advantage over other explanation methods as
CBR is nonlinear (e.g., as opposed to LIME (Ribeiro et al., 2016)) and can thus more
accurately abstract the nonlinear ANN function using only a single proxy model.

Kenny and Keane (2019, 2021a) have shown that this contributions-based feature-
weighting method provides the most accurate analysis of black-box ANNs, with a view
to finding factual example-based explanations. This feature-weighting method – Con-
tributions Oriented Local Explanations (COLE) – can be applied to both multilayered
perceptrons (MLPs) and convolutional neural networks (CNNs) to find explanatory
cases from the twinned k-NN/CBR model (i.e., a CNN-CBR twin) applied to the
same dataset. Negative weights in the C-HP indicate that a certain feature map is not
important for retrieving informative explanatory cases. COLE fits a k-NN model with
feature contributions to abstract the ANN function, that are calculated by multiplying
a data-instance by weights it used in the final prediction. To implement this in a CNN
there are two possible options. Firstly, the CNN may have several fully connected layers
post feature-extraction, in which case we have shown how saliency map techniques can
be used to implement COLE (Kenny and Keane, 2019). Secondly, there may be a linear
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Figure 13.1 The Twin-Systems Explanation Framework: A deep learning model (Neural Network) produces a
misclassification for an ImageNet test image, wrongly labeling a “Flute” as a “Horizontal Bar.” This prediction is
explained by analyzing the feature-weights of the network for that prediction and applying these to a twinned
k-NN (Case Based Reasoner/CBR System) to retrieve a nearest neighbor to the test-image in the training set. This
explanatory image shows that the model used an image of a “Horizontal Bar,” where the bar looked very like the
flute in the test image, to help make the classification. So, although the classification is wrong, it is somewhat
understandable.

Figure 13.2 Factual, semifactual and counterfactual Explanations for a CNN’s predictions applied on the MNIST
dataset.
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Figure 13.3 A CNN-CBR twin misclassifies an image of an automobile as a truck. Perhaps the main advantage of
twin-systems is their ability to retrieve training examples predicted to be in the same class as the test instance.
To illustrate this, in the unweighted twin-system, the explanation retrieved is an image of an automobile, which
does not make sense since the test image was classified as a truck. To be explicit, this explanation is saying “I
think the test image is a truck because it reminds me of this image I think is an automobile” (which makes no
sense). In contrast, the weighted twin-system retrieves an image classified as a truck. This basic requirement of
explanation-by-example (i.e., retrieving a training image predicted to be in the same class as the test image) is
only guaranteed to be fulfilled if twin-systems (and their feature weighting) are used.

classifier post feature-extraction (e.g., the ResNet architectures), in which case contri-
butions can be calculated by taking the Hadamard product of an instance’s penultimate
activations with the weight vector connected to its final classification (henceforth called
C-HP). The saliency maps (i.e., FAMs here) are not used in the nearest neighbor search,
they are a post-hoc addition after the neighbors are found (see Fig. 13.3).

C-HP has been extensively tested on 17 classification/regression datasets, which
consistently showed C-HP to be the best for both MLPs and CNNs. Initially, twinning
was demonstrated for classification (Kenny and Keane, 2019) but it has now been ex-
tended to regression problems and natural language domains (Kenny and Keane, 2021a).
Kenny & Keane originally used feature-activation maps (FAMs) to show the important
features in the explanatory images for the prediction (Kenny and Keane, 2019); how-
ever, FAMs can often produce unclear or unintuitive heat-maps for important features.
So, KDK21-CCR has proposed a new method for finding critical regions in the explana-
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tory image, to provide more information to users about the feature(s) that underlie the
classifications.

Sample Factual Explanations for Images. Fig. 13.1 shows the general architecture for
twinning between a Neural Network (CNN) and a k-NN (CBR) where the nearest
neighboring image found hinges on finding critical regions in candidate images in the
set of nearest neighbors; here, the original test image is misclassified but the explanation
shows why the model failed because of the presence of a very similar image (with
a Horizontal Bar instead of a Flute). Fig. 13.2(a) shows another factual explanation,
again for a misclassification, but using the MNIST dataset. Here, a test image of a
“1” is presented to a CNN and the model inaccurately labels it as a “6.” When the
feature-weights are abstracted from the CNN and mapped to the k-NN to retrieve
nearest-neighbors of the test in the dataset, a similar instance is found showing a “1” that
was annotated as a “1.” Here, the example-based explanation shows the user why the
model was in error; namely, that it has been presented with instances of ones that were
very like badly-drawn sixes and, accordingly, misclassified the test instance. Fig. 13.3
shows a more complex case, using the CIFAR-10 dataset involving the misclassification
of an automobile as a truck. This incorrect prediction is justified by the explanatory
example from the weighted-twin, which essentially says to the user “I think this is a
truck because it looks like the trucks I saw before.” In addition, the FAMs highlight
the most important (i.e., the most positively contributing) feature in the classification,
which clearly focuses on the vehicle wheels in all images. Since these are a central aspect
of both automobiles and trucks, it makes the misclassification more reasonable. In this
case, the explanatory example found by the unweighted twin does not actually explain
the misclassification, in a way that the weighed-twin does.

13.2.2 Factual explanations of time series
In the time series domain, factual explanations can be retrieved by identifying nearest
neighbors to the to-be-explained test instance. Typically, either Euclidean distance or
Dynamic Time Warping (if the instances are out of phase) is used in this nearest neighbor
retrieval. However, it is generally agreed that comparing test instances with their nearest
neighbors often yields little information about a classification decision (Ye and Keogh,
2011). Hence, factual explanations in this domain are often gained from retrieving class
prototypes. Class prototypes are instances that are maximally representative of a class and
have demonstrated promise in providing global explanations for time series classifiers
in the healthcare domain (Gee et al., 2019). A simple method used to retrieve class
prototypes is to extract medoids using the k-medoids clustering algorithm (Molnar,
2020).

However, one of the recognized problems with these techniques is that they typi-
cally fail to identify discriminative subsequences of the time series, that often contain
semantically-meaningful information for both classification and explanation. In light
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of these issues, a variety of techniques such as Shapelet mining (Ye and Keogh, 2011;
Grabocka et al., 2014) and Class Activation Mapping (Zhou et al., 2016; Wang et al.,
2017) have been proposed to identify discriminative regions of the time series. These
solutions can be cast as a type of explanation by visualization (Lipton, 2018), a very
popular family of explanation methods in the time series domain. However, recent re-
search has drawn attention to the unreliability of saliency-based approaches, especially
for multivariate time series data in combination with deep learning classifiers, motivat-
ing a need for more robust forms of explanation (Adebayo et al., 2018; Ismail et al.,
2020; Nguyen et al., 2020; Jeyakumar et al., 2020).

The twin-systems approach is still a relatively untapped, yet promising solution,
to the development of factual explanations for time series classification. The closest
works to this approach are those of Leonardi et al. (2020) and Sani et al. (2017) who
suggested mapping features from a Deep Learner (typically a CNN) to a CBR system for
interpretable time series classification. For global explanations, Gee et al. demonstrated
the promise of leveraging an autoencoder to learn prototypes from the latent space.
This design also enabled the extraction of real-world and semantically-meaningful global
features (e.g., bradycardia in electrocardiogram waveforms), highlighting the advantages
of combining Deep Learning and CBR for global factual explanations (Gee et al., 2019;
Li et al., 2017). As we shall see in the later section on counterfactual explanations, the
leveraging of discriminative features and instances from the training data also has a role
to play in generating informative contrastive explanations.

13.2.3 User studies of post-hoc factual explanations
Even though factual example-based explanations are one of the oldest XAI solutions in
the AI literature (in CBR see Sørmo et al. (2005); Leake and McSherry (2005), and in
Recommender Systems, see Tintarev and Masthoff (2007); Nunes and Jannach (2017)),
there are few well-designed user studies that test them. Keane and Kenny (2019), in
a survey of the CBR literature, found < 1% of papers reported user studies (many of
which were loose surveys of expert users). Furthermore, this literature also focuses more
on tabular data (see, e.g., Nugent and Cunningham (2005); Cunningham et al. (2003);
Dodge et al. (2019)) than on image or time series data (the latter receiving really no
attention for the reasons outlined earlier).

The few papers on factual explanations for images focus on two questions: how do
explanations (i) change people’s subjective assessments of a model (e.g., in task perfor-
mance, trust, and other judgments), and (ii) impact people’s negative assessments of a
model’s errors (so-called algorithmic aversion, see Dietvorst et al. (2015)). On the question
users’ perceptions of the model, the few relevant studies show somewhat modest impacts
for these explanations. Buçinca et al. (2020) reported two experiments examining how
example-based explanations influenced people’s use of an AI-model making predictions
about fatty-ingredients from pictures of food-dishes; they used multiple examples (i.e.,
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four photos of similar food dishes) or a single example with highlighted features (i.e.,
photo of one food-dish with identified ingredients). They found that providing expla-
nations improved performance on the fat-estimating task and impacted trust measures
in varied ways. However, these experiments have several design flaws that mean the
results need to be considered with care (e.g., imperfectly matched materials, statistical
comparisons between experiments as if they were conditions). Another study by Yang
et al. (2020) tested users’ (N = 33) trust in example-based explanations for a classifier’s
predictions for images of tree-leaves and found that specific visual representations im-
proved “appropriate trust” in the system; their classifier had an accuracy of 71% but,
notably, their participants were perhaps less expert (i.e., not botanists). Cai et al. (2019)
used drawings of common objects as explanations for misclassifications by a classifier;
their users (N = 1150) reported a better understanding of the model and viewed it as a
more capable when given an explanation. Finally, there is a smattering of other studies,
some using MNIST, that either have low N values (< 12) or are not reported in suf-
ficient detail from which to draw conclusions (Bäuerle et al., 2018; Glickenhaus et al.,
2019; Ross and Doshi-Velez, 2018). A notable and worrying finding from this work is
the lack of evidence on people’s performance on a target task. Many of them show that
people’s subjective assessments of the model change, but they do not show that expla-
nations improve their performance on a task (which is generally assumed to be one of
the goals of good explanation).

Finally, in a significant sequence of studies (involving several 100 participants), Kenny
et al. (2021a) and Ford et al. (2020) showed that people’s judgments of correctness of
a CNN’s errors on MNIST were subtly influenced by example-based explanations.
Specifically, people (perhaps without them being aware of it) came to view the errors as
“less incorrect” when given an explanation; ironically, it was also found that they came
to blame the model more than the data (i.e., poorly written numbers) when explanations
were provided. This work also systematically addressed the second question about the
impact of errors on people’s algorithmic aversion, by presenting different groups with
different levels of errors (between 3% and 60%). In general, they found that people’s
trust in the model linearly decreased with increasing error-levels and explanations did
not mitigate this decreasing trust. Indeed, beyond about 3–4% errors there is a steep
shift in trust levels.

Taken together, all of these results suggest three significant conclusions. First, the
provision of factual explanations is not a silver bullet for remedying algorithmic aversion.
Second, explanations can subtly affect people’s perceptions of a model (e.g., perceptions
of correctness) in ways that could be unethically exploited. Third, the evidence for
changes in people’s performance on a task (e.g., debugging a CNN or learning about
an unfamiliar domain), as a function of explanation is, at best, weak. However, it should
be said that these conclusions are made against a backdrop of a very poor programme of
user testing.
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13.3. Counterfactual & semifactual explanations: images

Although factual explanations have traditionally been the focus for example-based ex-
planations, recently a huge research effort has focused on contrastive, example-based
explanations (Kenny and Keane, 2021b; Miller, 2019; Byrne, 2019; Keane and Smyth,
2020). These developments have been partly motivated by the argument that contrastive
explanations are much more causally-informative than factual ones, as well as being
GDPR-compliant (Wachter et al., 2017). However, most current counterfactual meth-
ods only apply to tabular data (Wachter et al., 2017; Keane and Smyth, 2020), though
recent work has begun to consider images (Goyal et al., 2019; Van Looveren and Klaise,
2019; Kenny and Keane, 2021b). Figs. 13.2(b) and 13.2(c) show some samples of expla-
nations using contrastive, example-based explanations for a CNN’s predictions on the
MNIST dataset. In Fig. 13.2(c) the CNN misclassifies an image of an “8” as a “3” and
the counterfactual explanation generated shows how the test instance would have to
change to be correctly classified by the CNN as an “8”. Fig. 13.2(b) shows the other
type of contrastive explanation – a semifactual explanation – where a “9” is correctly
classified by the CNN and the explanation shows a generated instance of a “9” es-
sentially saying “even if the 9 changed to look like this, it would still be classified as
a 9.” One way to think about semifactuals is that they show users the “headroom” that
exists just before the decision boundary is crossed, whereas the counterfactual shows
users instances that occur after the decision boundary is crossed (see Fig. 13.4). In this
section, we reprise our model of contrastive explanations – the PIECE model (Kenny
and Keane, 2021b) – and propose some improvements to it, before testing it in a novel
experiment.

Figure 13.4 A test image from MNIST. A factual explanation could be presented (i.e., a nearest neighbor). Oth-
erwise, a semifactual could be presented for an explanation which points towards the decision boundary (but
does not cross it) to help convince the user the initial classification was correct. Lastly, a counterfactual could
be presented for an explanation which explains how to modify the test image into a plausible example of the
counterfactual class.
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Figure 13.5 The PIECE counterfactual method. The alpha parameter controls the proportion of “exceptional”
features that are modified to become “normal.”

13.3.1 PIECE: generating contrastive explanations for images
Kenny and Keane (2021b) proposed the PlausIble Exceptionality-Based Contrastive
Explanations (PIECE) method to generate counterfactuals for image datasets using a
statistical technique combined with a generative model. PIECE generates counterfac-
tual images by identifying “exceptional” features in the test image, and then perturbs
these identified features in the test instance to be “normal.” PIECE also generates semi-
factuals, as a side effect of generating the counterfactual, as the latter is generated from
perturbing exceptional features, just before crossing the decision boundary to generate
the counterfactual.

PIECE works by identifying “exceptional features” in a test instance with reference
to the training distribution; that is, features of a low probability in the counterfactual
class are modified to be values that occur with a high probability in that class. For
example, when a CNN has been trained on the MNIST dataset and a test image labeled
as “8” is misclassified as “3,” the exceptional features (i.e., low probability features in
the counterfactual class 8) are identified in the extracted feature layer of the CNN via
statistical modeling (i.e., a hurdle model to model ReLU activations) and modified to be
their expected statistical values for the 8-counterfactual-class (see Fig. 13.5). PIECE has
three main steps: (i) “exceptional” features are identified in the CNN for a test image
from the perspective of the counterfactual class, (ii) these are then modified to be their
expected values, and (iii) the resulting latent-feature representation of the explanatory
counterfactual is visualized in the pixel-space with help from the GAN.

Fig. 13.5 illustrates how PIECE works in practice to generate a counterfactual
image-explanation. Here, the counterfactuals to a test image I , in class c, with latent
features x, are denoted as I ′, c′ and x′, respectively. Fig. 13.5 shows a test image labeled
as class “8” (i.e., c) is misclassified as class “3” (i.e., c′). Exceptional features are identi-
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Figure 13.6 (A) A semifactual explanation justifying why the initial classification was definitely correct, in that,
even if the image was smiling much less, it still would have classified it as “smiling.” (B) A counterfactual expla-
nation conveying to a user why the CNN made a mistake, and how the image would need to look for it to have
classified it correctly (as computed by PIECE+ and Min-Edit).

fied using mathematical probability in the extracted feature layer X which have a low
chance of occurrence in c′; these are then modified to be their expected feature values
for class c′ which modify the latent representation x to be x′. This new latent counter-
factual representation x′ is then visualized in the pixel space as the explanation I ′ using a
GAN depending on the number of exceptional features changed, PIECE will produce
a semifactual or counterfactual. To implement semifactual explanations for images, we
used the PIECE algorithm, but stop the modification of exceptional features before
the decision boundary is crossed. Figs. 13.6(A) and 13.6(B) illustrate other examples of
semifactuals and counterfactuals for the CelebA dataset.

Reported experiments using PIECE have shown that it generates plausible coun-
terfactuals and semifactuals, and is less likely than other models to generate out-of-
distribution explanatory instances. It also may be unique in that it is (to our knowledge)
the only method which produces counterfactuals for multiclass classification, without
requiring human intervention to select the counterfactual class. However, as we shall
see in the next subsection, PIECE is not as general as it could be and can be improved
in several ways.

13.3.2 PIECE+: designing a better generative method
The generation of explanatory counterfactual images using deep learning hinges on
finding key features in the image and then modifying these features in plausible, in-
tuitive and informative ways. Several solutions to this problem have been proposed
in the literature. He et al. (2019) proposed AttGAN, a method which produces very
realistic-looking modifications to images. However, their method focuses only on a
single dataset, and relies on class attribute labels, with no consideration given to coun-
terfactual explanation or class modification. Liu et al. (2019) proposed that AttGAN
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could be used for counterfactual generation; however, their approach cannot be ap-
plied to a pretrained network, and again relies on attribute-labeling to work. Mertes et
al. (2020) pursued a different approach based on modifying CycleGAN (Almahairi et
al., 2018); this method produces quite realistic image modifications in radiology, but is
limited to binary classification problems. In contrast to these methods, PIECE adopts
another approach, utilizing statistical hurdle models alongside a GAN. However, PIECE
is limited in its requirement for a well-trained GAN for the domain in question, along-
side the ability to recover latent representations of test images in the GAN. This limits
PIECE to relatively simple datasets such as MNIST, as locating a test image’s latent rep-
resentation in a GAN is far from a solved problem in AI currently (Zhu et al., 2020).
The current improvement on PIECE – PIECE+ – builds upon AttGAN with three
important modifications: (i) a pretrained CNN is incorporated into the PIECE frame-
work, so that any CNN may be explained post-hoc, (ii) AttGAN is modified to handle
multiclass classification, and (iii) the more flexible architecture allows handling of more
complex datasets beyond MNIST (such as CelebA) by virtue of avoiding the need for
latent recovery of test images in a GAN. In the next subsection, we describe PIECE+
in more detail, before reporting some preliminary observations.

13.3.2.1 PIECE+: the method

The PIECE+ method is trained over several steps using three distinct losses – the
Reconstruction, Adversarial, and Classification Losses – combined using multiobjec-
tive optimization, which all start from the initial encoder/generator component (see
Fig. 13.7). During training, the test image is encoded by E into a latent representation
z ∈ R

(4,4,k), where k is the number of feature kernels. During training, the encoding z
firstly has a label vector C ∈ R

(1,1,n) appended to it, to generate a reconstruction, and
again a counterfactual label vector of the same shape (which is randomly chosen), to
generate a counterfactual image (i.e., there are two separate forward passes). Either way,
this additional vector is expanded into a matrix C ∈ R

(4,4,n), where n is the number
of classes in the domain. Hence, the vector z has a 4 × 4 × 10 matrix appended to it
in MNIST here (since there are 10 digit classes), where one of these 4 × 4 “slices” is
filled in with 1’s (representing the class we are generating), and the rest 0’s. This final
representation is decoded through the generator G and (depending on what vector c
was appended to it) generates either a target counterfactual image, or a reconstruction
of the original image.

The Reconstruction Loss involves the reconstruction of the image compared to the
original image, and the loss is taken to train the encoder/generator (L1-loss is used
here). Using Adversarial Loss, the generated counterfactual image is then input to the
discriminator network (also known as a “critic” network), and an adversarial loss is taken
by comparing it to the dataset of “real” images. WGAN-GP is used here (Gulrajani
et al., 2017), and the typical hyperparameters associated with it (e.g., using an Adam
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Figure 13.7 An overview of the CF Method: a combination of (1) a reconstruction loss, (2) an adversarial loss
using the discriminator (D), and (3) a classifier (C) loss combine to train the encoder (E) and generator (G) archi-
tecture. Heavily adapted from He et al. (2019).

optimizer and training the generator every five steps). Then Classification Loss is used
when the generated counterfactual image is passed into the CNN we are trying to
explain, with the aim of classifying the image with a probability of 1.0 in the target
counterfactual class, a cross-entropy loss is taken for multiclass classification as is typical.
Following the typical WGAN-GP framework, we train the entire system as follows. The
critic (also known as discriminator D) is trained for 4 iterations using the typical loss
in addition to the gradient penalty, then on the 5th iteration the generator/encoder is
trained using the Classification, Reconstruction, and Adversarial Losses (i.e., how good
the generated images are measured by the critic). So, a combination of all these losses is
backpropagated.

One limitation of this method is that the CNN is required to have been trained using
the same activation functions/normalization as the critic network. Here we used leaky
ReLU and instance normalization in both networks. However, there is some leeway to
be found, in that the usage of leaky ReLU in the critic and ReLU in the CNN appears
to produce almost optimal results, but we empirically found the best results to be using
leaky ReLU and instance normalization in both networks. Future research would do
well to investigate how to train this system without any limitations on the pretrained
CNN architecture.

13.3.2.2 Results: PIECE+

Here the results of two brief evaluations are shown, the first of which is a demonstration
of the method on MNIST, and the second a quantitative evaluation. Lastly, we conclude
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with a brief reflection on what improvements this new implementation of PIECE has
brought, and what future challenges remain.

Sample explanations
In Fig. 13.8 we see an example of a straightforward transition from the digit 7 to the
digit 9 in MNIST. Although the network is not trained to produce plausible images
between the image reconstruction and the counterfactual image, it can nevertheless
“fade” between both images by gradually adjusting the C ∈ R

(4,4,n) matrix accordingly,
similar to the original AttGAN paper (He et al., 2019). During this transition, it is
possible to generate either a semifactual image of a 7, or a counterfactual image of a 9;
note, the red line (dark gray in print version) in Fig. 13.8 shows where the decision
boundary falls, so semifactuals will occur before it and counterfactuals after it.

Figure 13.8 A test image of a 7 on MNIST is slowly transformed from a 7 to a 9. During the transition, it is
possible to generate both a semifactual and a counterfactual. The red line (dark gray in print version) represents
the model decision boundary.

Automatically selected counterfactuals
Perhaps the key novelty of PIECE is its ability to generate counterfactual images in
multiclass classification problems, and being able to automatically select counterfactual
classes in such an instance (most work in the area has focused on binary classification).
Originally, PIECE did this by gradient ascent, were the full pipeline was able to auto-
matically select the CF class (Kenny and Keane, 2021b), this was necessary as the GAN
formed an integral part of the pipeline. Here however, that is not the case, and the
CF class can be automatically selected simply by choosing the class of second highest
probability in a classification. Hence, here we compare this against a baseline which
randomly selects a CF class in 64 randomly selected test images. The main idea here is
that the better the method, the closer the explanation should be in pixel-space. Hence,
if allowing PIECE to automatically select the counterfactual is better, the generated
explanations should be closer to the original test image.
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For counterfactuals, the mean L2 pixel-space distance between the original images
and for PIECE selected CF classes was 14.65 ± 0.36, whilst it was 16.50 ± 0.51 for the
randomly selected ones, showing a largely statistically significant difference with a two
tailed, independent t-test (p < 0.005). For semifactuals, the mean L2 pixel-space distance
between the original images and for PIECE selected CF classes was 8.80 ± 0.23, whilst
it was 17.44 ± 0.23 for the randomly selected ones, again showing a largely statistically
significant difference with a two tailed, independent t-test (p < 0.0001). Overall, the
results clearly show that PIECE’s ability to automatically select the counterfactual class
via simply choosing the class of second highest probability will result in better “closer”
contrastive explanations than allowing users to manually select it, which should generally
result in better explanations (Keane and Smyth, 2020).

Conclusion: PIECE improvements

The main problem with the original implementation of the PIECE framework by
Kenny and Keane (2021b) is that it requires the recovery of a latent representation
for a test image in a GAN. Whilst this works well on MNIST, it is still an open research
area for more complex domains (Zhu et al., 2020). To solve these issues, PIECE+ has
taken inspiration from AttGAN and designed a general framework for post-hoc con-
trastive explanations in image domains. Namely, to solve the issue of recovering a latent
representation for a test image, PIECE+ has an encoder/decoder architecture which
alleviates the issue completely by training the prior to encode these representations dur-
ing training. This has the added benefit of allowing PIECE+ to work in more complex
domains such as CelebA (see Fig. 13.6). Additionally, quantitative testing has suggested
it is still beneficial in this new implementation of PIECE to allow automatic selection
of the CF class, rather than trusting users to. Future work will examine the integra-
tion of modifying “exceptional features” within this new framework, which was shown
to work well before (Kenny and Keane, 2021b). In the next section, we continue this
examination of contrastive explanations by considering methods for time series data.

13.4. Contrastive explanations: time series

In the previous section, we reported on the explosion of research on counterfactual
explanations and on how most of this research tends to focus on tabular rather than
image datasets. Even less of this research has considered the time series domain. Inter-
estingly, tabular methods for counterfactuals (Wachter et al., 2017; Keane and Smyth,
2020), quickly become intractable for time series data because of the massive number of
possible feature dimensions and the utility of domain-specific distance measures (such as
DTW) (Delaney et al., 2021). Indeed, much of the work reviewed here has only been
published in the last two years (only the present work has even considered semifactuals).
In this section, we reprise our model of contrastive explanations for time series – Native
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Guide (Delaney et al., 2021) – and propose some improvements to it, before testing it
in a novel experiment.

The current focus in XAI for time series mainly considers saliency-based approaches
where important subsequences or features are highlighted (Wang et al., 2017; Fawaz
et al., 2019b; Schlegel et al., 2019). However, it is quite unclear if these explanations
are faithful to the underlying black-box model in providing informative explanations
(Adebayo et al., 2018; Ismail et al., 2020; Nguyen et al., 2020)

Many have considered leveraging shapelets to generate contrastive explanations
(Karlsson et al., 2018; Guidotti et al., 2020). However, issues have been raised about the
interpretability of the shapelets produced by the frequently deployed shapelets learning
algorithm (Grabocka et al., 2014), and many solutions are not model agnostic. By mod-
ifying the loss function proposed by Wachter et al. (2017) to generate counterfactuals,
Ates et al. (2020) explored generating counterfactual explanations for multivariate time
series classification problems. Labaien et al. (2020) have progressed contrastive explana-
tions for the predictions of recurrent neural networks in time series prediction.

The Native Guide method (Delaney et al., 2020, 2021) adopts a different approach
to these other methods and we demonstrate that it can work with any classifier (model-
agnostic). In the next subsection, we sketch the essence of this method before proposing
a novel extension to it using Gaussian noise.

13.4.1 Native guide: generating contrastive explanations for time series
Native Guide (Delaney et al., 2020, 2021) incorporates a strategy where the closest in-
sample counterfactual instance to the test-instance is adapted to form a new counterfac-
tual explanation (Keane and Smyth, 2020; Goyal et al., 2019). Here the “Native-Guide”
is a counterfactual instance that already exists in the dataset (e.g., the nearest-neighbor
time series to the test-instance that involves a class change; see Fig. 13.9). We can re-
trieve this in-sample counterfactual instance using a simple 1-NN search. Once this
instance is found it is leveraged to guide the generation of the explanatory counter-
factual T ′. The generated counterfactual instance T ′ (the yellow square [light gray in
print version] in Fig. 13.9), should offer better explanations than the original in-sample
counterfactual as it is in closer to the test whilst still staying within the distribution of
the data. As an aside, we note that Native Guide could also be used to compute plau-
sible semifactual explanations by terminating the counterfactual generation process just
before the explanatory instance enters the counterfactual class.

Native Guide generates counterfactual explanations for a to-be-explained query,
Tq, by leveraging both (i) discriminative feature information and (ii) native counter-
factual instances (e.g., the query’s nearest unlike neighbor (T ′

NUN )). Blind perturbation
techniques frequently fail to account for dependencies between features and leveraging
information from native counterfactual instances in the training data can immensely
aid the generation of meaningful explanations (Keane and Smyth, 2020; Delaney et al.,
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Figure 13.9 A query time series Tq (X with solid arrow) and a nearest-unlike neighbor T ′
NUN (red square [dark

gray in print version] with solid arrow) are used to guide the generation of counterfactual T ′ (see yellow square,
light gray in print version) in a binary classification task. Another in-sample counterfactual (i.e., the next NUN;
other red square [dark gray in print version] with dashed arrow) could also be used to generate another coun-
terfactual for diverse explanations.

2021). However, gaining informative information from neighbors can be quite diffi-
cult when working with noisy time series data (Le Nguyen et al., 2019; Schäfer, 2016)
and techniques such as dynamic time warping and weighted barycenter averaging (Pe-
titjean et al., 2011; Forestier et al., 2017) are often required to generate meaningful
explanations when instances are out of phase (Delaney et al., 2021). Moreover, access
to neighbors from the training dataset may not always be available when generating
explanations. So, a technique that purely utilizes discriminative feature information in
generating counterfactual explanations bears practical utility. Hence, we considered an
adjustment to Native Guide in a scenario where information from training instances is
not readily available, greatly improving the flexibility of the technique.

13.4.2 Extending native guide: using Gaussian noise
Nguyen et al. (2020) analyzed the informativeness of different explanation techniques
by adding Gaussian noise to discriminative subsequences and monitoring the degrada-
tion of classification performance. In this work, we demonstrate that Gaussian noise can
be leveraged to generate counterfactual explanations without the need to access native
counterfactual instances in the training data. In Native Guide, the counterfactual expla-
nations are generated by modifying a contiguous subsequence of the to-be-explained
test instance. As before, the most influential contiguous subsequence, TSub, according
to a feature-weight vector, ω, is identified. This feature-weight vector can be retrieved
from class activation maps (CAMs) when using convolutional architectures (Zhou et al.,
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2016; Wang et al., 2017), or alternatively, from model agnostic techniques such as LIME
(Ribeiro et al., 2016) or SHAP (Lundberg and Lee, 2017). However, instead of replac-
ing the values of Tq with the corresponding region in T ′

Native, Gaussian noise is added to
the discriminative subsequence, TSub +N (μ, σ 2), to generate a counterfactual, T ′. This
is an iterative process, initializing with a small subsequence and iteratively increasing the
size of the perturbed subsequence and/or the magnitude of the Gaussian noise until a
counterfactual is generated.

Experiment: extending native guide
In this experiment we demonstrate the model agnostic flexibility of Native Guide
through implementing both Mr-SEQL (Le Nguyen et al., 2019) and a pretrained
ResNet architecture (Fawaz et al., 2019b) as the base classifiers on two popular UCR
datasets (Dau et al., 2019) (Coffee & Gunpoint). We compare the counterfactual gen-
erated across architectures when injecting Gaussian noise onto discriminative subse-
quences of the time series. We also compare the explanations to the counterfactuals
generated by the original variant where access to instances from the training data are
available. For the ResNet architecture, we use Class Activation Maps (CAMs) to extract
the feature weight vector ω. MR-SEQL converts the time series to a symbolic rep-
resentation and extracts discriminative feature information using a symbolic sequence
learning algorithm. Following Keane and Smyth (2020); Delaney et al. (2021), we use
a relative counterfactual distance measure to monitor the proximity and sparsity of the
generated counterfactual with respect to existing in-sample counterfactual solutions.

Results and discussion
Native Guide consistently generates sparse counterfactuals that are closer to the to-be-
explained query than in sample counterfactual instances when access to the training
data available. Interestingly, when adding Gaussian noise into the input time series, the
counterfactuals for the ResNet classifier typically required much fewer feature changes
than the Mr-SEQL classifier. For example, in the coffee dataset the mean relative L1

distance between the query and the counterfactual was 0.47 ± 0.08 for the ResNet
architecture and significantly larger, 1.12 ± 0.12, for the MR-SEQL classifier (indepen-
dent two tailed t-test p < 0.01). One possible explanation for this is that Deep learning
architectures are very sensitive to slight perturbations on the input time series and prone
to adversarial attack (Fawaz et al., 2019a). Access to neighbors in the training data guar-
antees the generation of plausible counterfactual instances (perfect coverage) (Delaney
et al., 2021). Adding Gaussian noise to a discriminative subsequence sometimes failed
to generate a counterfactual explanation for instances in the gunpoint dataset, especially
for the more robust MR-SEQL classifier, indicating the importance of leveraging infor-
mation from the training data in generating informative explanations. Different feature
weight vectors often resulted in different counterfactual explanations (see Fig. 13.10).
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Figure 13.10 Counterfactual explanations for the predictions of both a ResNet architecture (Fawaz et al., 2019a)
using Class Activation Mapping (Zhou et al., 2016; Wang et al., 2017), and Mr-SEQL (Le Nguyen et al., 2019) on
an instance from the coffee dataset, where the task is to distinguish between Arabica and Robusta coffee beans
from spectrographs. The ResNet architecture is more sensitive to slight perturbations on the input signal and
the counterfactuals produced typically focus on a discriminative area of the time series that contains informa-
tion about the caffeine content of the beans. Mr-SEQL is more robust to noise and the produced counterfactual
explanations typically focus on an area containing information about the acid and lipid content of the coffee
beans (Briandet et al., 1996).

For example on the coffee dataset, the counterfactuals generated from in symbolic se-
quence learning algorithm in Mr-SEQL typically focus on an area of the time series that
contain information about the chlorogenic acid and lipid content of the coffee beans
whist the class activation maps (CAMs) from the ResNet architecture often focused on
a contiguous subsequence that contained discriminative information about the caffeine
content of the beans (Briandet et al., 1996; Dau et al., 2019). As feature weighting
techniques often highlight different regions in the input time series, the availability of
ground truth domain knowledge expertise is crucial in assessing if the produced expla-
nations are plausible as computational proxies are an imperfect proxy measure, further
instilling the need for user studies with domain experts in the time series domain.

13.5. User studies on contrastive explanations

In the previous sections, we considered a variety of methods for computing contrastive
explanations for images and time series datasets. For the most part, the focus of user
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studies in this area has been almost wholly on counterfactual explanations with most
of these studies focusing on tabular data. Though semifactuals have been researched in
psychology and philosophy (e.g., see McCloy and Byrne (2002)), they have yet to be ex-
plicitly tested in XAI (for a solitary exception see Doyle et al. (2004)). Indeed, arguably,
even the user studies on counterfactuals seem to be behind the curve of computational
advances in the area.

Keane et al. (2021) reviewed the user studies on counterfactual explanations based
on a survey of > 100 distinct counterfactual methods in the recent literature. They
found that only 31% of papers perform user studies (36 out of 117) and fewer (21%)
directly test a specific method on users. This means that few of the features that are
discussed in the AI literature have been explicitly tested with users. Furthermore, as was
the case with tests of factual explanations, many of these studies are methodologically
questionable (e.g., use low N s, poor or inappropriate statistics, nonreproducible designs,
inadequate materials).

The user-tests that have been done provide moderate support for the efficacy of
counterfactual explanations under some conditions. Some studies show counterfactual
explanations to be useful and preferred by end users (e.g., Lim et al. (2009); Dodge et
al. (2019)). For instance, Lim et al. (2009) tested What-if, Why-not, How-to, and Why
explanations, and found that they all improved performance relative to no-explanation
controls. Dodge et al. (2019) assessed four different explanation strategies (e.g., case
based, counterfactual, factual) on biased/unbiased classifiers and found counterfactual
explanations to be the most impactful (though for a very limited set of problems).
However, other studies show that counterfactual explanations often require greater cog-
nitive effort and do not always outperform other methods (Lim et al., 2009; van der
Waa et al., 2021; Lage et al., 2019; Dodge et al., 2019). Notably, however, few of these
studies directly test specific facets of counterfactual algorithms (e.g., sparsity, plausibility,
diversity) or compare competing methods (Goyal et al., 2019; Singla et al., 2019; Lucic
et al., 2020; Akula et al., 2020; Förster et al., 2020a,b, 2021). This means that there is
quite limited support for the specific properties of most counterfactual methods in the
AI literature. Indeed, with respect to image and time series data, the literature is ever
thinner and, as such, we await evidence to support the efficacy of these methods.

13.6. Conclusions

This chapter has considered state-of-the-art contributions to the rapidly evolving and
increasingly important field of XAI; namely, the use of post-hoc explanations involving
factual, counterfactual, and semifactual examples to elucidate a variety of Deep Learn-
ing models. There are many future directions in which this work can be taken. For
instance, with respect to image data, we have begun to look at combining example-
based explanations with visualizations of critical regions, reflecting important features



286 Explainable Deep Learning AI

impacting a Deep Learner’s predictions. Parallel opportunities exist for similar devel-
opments in the time series domain. However, if we were pressed on what is the most
important direction to pursue, it would have to be that of user testing. In many re-
spects, XAI is starting to exhibit quite a dysfunctional research program, where 100s or
1000s of models are being developed without any consideration of their psychological
validity. Recently, there has been a growing commentary on this deficit in XAI, on the
failure to properly address user requirements (Anjomshoae et al., 2019; Hoffman and
Zhao, 2020), on the “over-reliance on intuition-based approaches” (Leavitt and Mor-
cos, 2020), and on the increasing disconnect between the features of models and actions
in the real-world (Barocas et al., 2020; Keane et al., 2021). In short, it is our view that a
significant program of carefully-controlled and properly-designed user studies needs to
be carried out as a matter of urgency, if XAI is to avoid drowning in a sea of irrelevant
models.
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