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Abstract. Accurate milk supply forecasting for the dairy sector, cover-
ing 1000s of farms with low resolution data, is a key challenge in achieving
a sustainable, precision agriculture that can improve farm management,
balancing costs, energy use and environmental protection. We show that
case-based reasoning (CBR) can meet this sustainability challenge, by
supplementing a time series prediction model on a full-year-forecasting
task. Using a dataset of three years of milk supply from Irish dairy
farms (N=2,479), we produce accurate full-year forecasts for each in-
dividual farm, by augmenting that farm’s data with data from nearest-
neighboring farms, based on the similarity of their time series profiles
(using Dynamic Time Warping). A study comparing four methods (Sea-
sonal Näıve, LSTM, Prophet, ProphetNN ) showed that the method us-
ing CBR data-augmentation (ProphetNN ) outperformed the other eval-
uated methods. We also demonstrate the utility of CBR in providing
farmers with novel prefactual explanations for forecasting that could
help them to realize actions that could boost future milk yields and
profitability.

Keywords: Smart Agriculture · Dairy Production · Time Series · Pref-
actual Explanation · CBR · Data Augmentation

1 Introduction

While SmartAg was originally predicated on delivering enhanced agriculture
yields and productivity, increasingly it is becoming more about delivering a
sustainable and efficient agriculture that minimally pollutes, delivers equiva-
lent/better production levels from fewer inputs, aiming for a zero-carbon impact
on the environment in accordance with the UN’s sustainability goals and the
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promise of “AI for Good” [16, 42]. In the dairy sector, this challenge translates
into producing the same or higher volumes of milk from fewer animals (e.g., ge-
netically selecting cows that efficiently process what grass they eat), on pastures
that make minimal use of artificial fertilizers (e.g., through using clover/grass
mixes) and where carbon impacts are offset or balanced (e.g., using locally-grown
grass rather than imported feed). Ultimately, meeting these challenges relies on
understanding the relationships between a complex array of inputs (from ani-
mal genetics, to farm management to pollution measurement) and the volume
of produce output by this sector, namely milk. Accurate long-term milk-supply
forecasting plays a fundamental role in driving on-farm decision-making and
processing capacity. Previous time series research has argued that “combining of
CBR with other approaches, seems promising and can improve the quality of fore-
casting” [33]. CBR systems have also been successfully applied in oceanographic
forecasting tasks [11]. More generally, in the agriculture domain, CBR solutions
have enjoyed success in a variety of prediction tasks including grass growth pre-
diction [24, 25, 40] and rangeland grasshopper infestation prediction [4, 15]. In
this paper, we show the promise of AI techniques, in particular how time se-
ries analyses can be improved by data-augmentation techniques, using k-nearest
neighbor methods from CBR [1], to accurately forecast long-term milk supply.
In addition, we show how CBR can be used to generate prefactual explanations
to help farmers realize actions that could be taken to boost milk yield in future
years (Section 3), before concluding and discussing promising avenues for future
research (Section 4).

1.1 Why Milk-Supply Forecasting is Important for Sustainability

In any given year, milk supply forecasting is a fundamental driver for the dairy
sector. Dairy companies use their forecasts to establish pricing, contracts with
farms, and the production requirements for their factories. As such, proper fore-
casting strongly influences on-farm management (e.g., in under/over production
and manner of production), the consumption of resources in the sector (e.g., fer-
tilizer use, tanker-transport use for milk collections) and the processing efficiency
of factories (e.g., avoiding waste from surplus milk supplies) [36,41]. Dairy pro-
cessors can drive sustainability changes through accurate and precise forecasting.
However, forecasting in this sector faces significant challenges. Milk-supply fore-
casts (i) must be made for 1000s of farms which differ from one another in their
herd-profiles, the land farmed and their farm-management practices, (ii) have to
be made in advance for the full year, for planning purposes, not incrementally as
the year unfolds, (iii) can encounter disruption from climate-change and disease
outbreaks (e.g., a hot summer can stop grass growth).

1.2 Predicting Milk Supply With Low-Resolution Data at Scale

Several models exist in the literature that can forecast milk supply accurately,
but typically only for experimental farms, which have extensive and carefully-
recorded data (e.g., on individual cows, farm management practices; see [45]
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for a review). In this single-farm prediction context, the most successful models
are the surface-fitting model and the NARX (Nonlinear autoregressive model
with exogenous inputs; which has a RMSE=75.5kg for a 365 day horizon [44]).
These models use features such as Days-In-Milk (number of days a cow has been
lactating) and the NCM (number of cows milked) in the herd. Some studies have
used as many as 12 features, including genetics, feed, and grazing management
information of the individual cows. However, such high-resolution data is rarely
available for most commercial farms [45]. So, it is unclear how these forecasting
methods can commercially scale to 1000s of farms.

In the present work, we attempt to forecast using low-resolution data where
we have little information on individual cows and on-farm practices. In our time
series model, we forecast for a given farm using the following minimal case-
features: DATE (dd-mm-yyyy), WEEK (no. in year), MONTH (no. in year),
HERD-DIM (Mean Days-in-Milk for the herd), CALVINGS (cumulative no. of
calving’s) to predict the target variable SUPPLY-QUANTITY (no. of litres in a
given bulk-tanker collection). The DIM (Days-In-Milk) feature records the num-
ber of days a cow has been milking for and is important because a cow’s milk
yield varies over the season with a predictable profile (i.e., the so-called lactation
curve that increases to Day-60 and then trails off (see [18]), The CALVINGS (cu-
mulative no. of calving’s) feature captures the number of offspring in the herd
and is important because a cow only commences milking when it has given
birth. Forecasting from these low-resolution inputs is quite hard because many
key factors are missing (e.g., individual cow characteristics, amount and qual-
ity of feed used, calving management, etc.). Furthermore, the target variable,
SUPPLY-QUANTITY, is not as informative as it could be, because it does not
necessarily reflect one complete milking of the herd on a given day. It is a mea-
sure of the milk collected in a bulk tank on the farm (see Figure 1) by a tanker
truck, and can reflect several milkings of the whole herd; specifically, as tanker
collection times can vary between 1-3 days, a single collection could contain 1-5
complete milkings of the herd. Figure 2 shows the variability that can occur in
these weekly milk-supply figures from one farm over the three-year period.

Fig. 1: An on-farm, bulk tank where cooled milk is stored, before being collected
by a tanker truck by the milk processor.
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1.3 How CBR Might Improve Milk Forecasting

Previous unpublished work on this milk forecasting problem, using low resolu-
tion data, has shown that deep learning methods can make better predictions
than traditional auto-regressive methods. However, the absolute error-levels from
these models were unacceptably high. The standard data-analytics approach to
this problem uses historical milk-supply, time series data to predict on a farm-
by-farm basis and then aggregates these predictions to get the forecast for all
the farms supplying a single milk-processing company. Our conjecture was that
the error found in previous models was due to one or other of three factors: (i)
having insufficient data for a given farm, (ii) disruptive events in a farm’s history
that undermined generalizations across years (e.g., a once-off disease outbreak),
(iii) changes in the tanker-collection schedule for a given farm. Hence, we hy-
pothesised that, if the data for a single farm were supplemented with data from
similar farms during the prediction step, then these sources of error might be
reduced. This hypothesis invites a CBR solution, where we use k-NN to find a
small number of nearest-neighbor farms based on some similarity metric (i.e.,
not necessarily spatially-proximate farms) and then use their data to augment
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Fig. 2: Example of (a) 3-Year Milk Supply Profile of one farm, and (b) its nearest
neighbor, retrieved using a dynamic time warping distance
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the dataset for the time series predictions. A key question for this solution is
how to determine the similarity between farms. Our solution bases this similar-
ity on the multi-year profile of milk-supply between farms. One problem with
this profile-similarity approach is that two farms may have very similar supply
profiles but they may not align to one another in the time axis [2, 31], because
one farm may have started milking slightly earlier/later in the year compared
to the other. To solve this problem, we retrieve farms with a k-NN using a dy-
namic time warping (DTW) distance measure, which has previously been used
in CBR systems for both classification and regression tasks [28]. DTW allows
the matching of profiles irrespective of temporal-offsets that might occur in the
year. Figure 2 shows one farm-profile over a three year period and its nearest
neighbor when DTW is used.

2 A Study On Forecasting Milk Supply

Dataset. The data considered in this work covers dairy herds/farms (N=3,104)
across 14 Irish counties for one dairy company (Glanbia) over four consecutive
years. Cases describe the number of cows and calves in a herd at each milk
collection and milk collected (target variable). On removing farms with missing
data, the dataset had N=2,479 farms. Specific dates are anonymised throughout
this paper on request from the industry partner furnishing the data.

Forecasting methods. Four different forecasting methods were used. First,
as a simple benchmark [19], a Seasonal Näıve Forecasting method was used; it
assumes that every week of the prediction-year’s milk supply will be exactly the
same as that of last year. While this is a popular benchmark in the forecasting
space [19], it has surprisingly not been evaluated in previous milk supply pre-
diction to the best of our knowledge (e.g., see review from [45]). Second, the
Long Short Term Memory (LSTM) deep learning model was used as previously
unpublished work found it to work best on this problem; LSTM stores sequences
in long and short term states and then reuses them for prediction [17]. However,
this has been shown to underperform basic statistical models on long-term fore-
casting and its processing overheads are an issue to be considered [29]. Third,
the Prophet forecasting method, a generative additive model regularized with
Bayesian techniques [38] was also used; it has been shown to work best for time
series with strong seasonal effects and several seasons of historical data and in
its simplest form is expressed as follows:

y(t) = g(t) + s(t) + ϵt (1)

Here the trend component, g(t), automatically selects change points based on
historic data by imposing a Laplacian prior. The seasonal component s(t) is ap-
proximated with a Fourier series and a smoothing prior is imposed (see Equation
2). For yearly seasonality we set the regular period P = 365.25 and we setN = 10
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allowing one to calculate the Fourier coefficients, an and bn, as recommended
by [38].

s(t) =

N∑
n=1

(ancos(
2πnt

P
) + bnsin(

2πnt

P
)) (2)

The error term ϵt represents unusual changes that are not accommodated by the
model but do contribute to the final forecast. An optional holiday term h(t) can
be included which accommodates strange but regular occurrences in a time series
(e.g., a jump in activity around Christmas time when forecasting retail sales).
Unlike many traditional forecasting techniques (e.g., ARIMA), Prophet auto-
matically provides uncertainty estimates on its forecasts and does not require
measurements to be regularly spaced in the time axis.

This technique has many useful analyst-in-the-loop characteristics that could
be exploited in practical applications (e.g., specifying the maximum capacity of
a farm, unusual events such as disease-outbreaks or seasonal-changes can be set
in advance of prediction). Fourth and finally, our own ProphetNN was used; it
extends the Prophet model by adding the k-nearest-neighboring farms (using
DTW as a distance metric) to augment the training data prior to prediction (in
the reported results k= 3 was used in this model). Specifically, the historic and
predicted supply from the 3-NN herds are added as additional features in the
model.

Evaluation metrics. Measures used included absolute error (AE) and mean
absolute error (MAE), both measured in terms of litres-of-milk. We also con-
sidered MASE (Mean absolute scaled error), since it is the preferred evaluation
technique in the forecasting literature, having many benefits over traditional
measures [20]. When the MASE score is < 1 it means that the proposed method
is outperforming the Seasonal Näıve forecast, whereas a MASE score > 1 means
the opposite (i.e., smaller value better). Kullback-Leibler Divergence scores were
used to compare model distributions to the ground truth.

Setup and evaluation. The first three years were used as training data and
the final year as test data. Holdout strategies are preferred for real-world non-
stationary time series data [6], where we want to maximize the ability of the
models to learn seasonal effects from the full three years of training data. For
each week of the test year we have a predicted value and the actual value.
Forecasts were generated for each farm and then aggregated. For the LSTM
implementation, the Adam optimizer was used with 100 epochs, a batch size of
4, and a learning rate of 0.001. The Keras API was used [7]. Dropout layers were
implemented to prevent overfitting. The Prophet model was implemented using
the month, week, herd average DIM, and cumulative calving number features,
with milk supply quantity as the target variable. No additional hyperparameters
were implemented. In ProphetNN , k=3 for retrieving nearest neighbors for each
farm when the forecasts were being made. All other ProphetNN parameters were
identical to those used in Prophet.
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Fig. 3: A comparison of forecasts from the four methods relative to actual milk
supply, as calculated on the final test year.

Table 1: Annual supply forecasts and error measures for each milk supply fore-
casting model. The ground truth value for actual production was 774.5M ltrs.

Evaluation Unit S-Näıve LSTM Prophet ProphetNN

Predicted Amount Ltrs 755.8M 652.6M 796.1M 789.6M
Absolute Error Ltrs 18.7M 129.1M 21.6M 15.1M
MAE (Weekly) Ltrs 0.97M 4.8M 0.95M 0.58M
MASE N/A 1 4.96 0.976 0.595

Results and discussion. The ProphetNN model performs reliably better
(MASE = 0.595) than both the original Prophet model (MASE = 0.976) and
the Näıve forecast (MASE = 1.00; see Table 1). In terms of the absolute er-
ror over the whole year, the ProphetNN prediction (789.6M ltrs) is closest to
the actual value (774.5M ltrs), with a commercially acceptable error-margin (at
15.1M ltrs). It is 3.6M litres more accurate than the next best model (the Näıve
model). This ordering of models by accuracy is mirrored by Kullback-Leibler
Divergence scores, DKL(P ||Q), comparing each model’s distribution (Q) to the
2014 ground-truth distribution (P ): ProphetNN (0.003), Näıve (0.004), Prophet
(0.008), LSTM (0.068). Notably, in milk supply prediction, small differences in
error measures result in large differences in real-world, commercial outcomes
(i.e., in millions of litres). In this respect, the Näıve model really does quite well,
whereas the LSTM model is notably bad, confirming its under-performance in
long-term forecasting [29]; however, it might improve with farm-by-farm hyper-
parameter tuning. All models tend to underpredict the peak milk-supply occur-
ring in the summer months (see Fig.3). This is a common theme in milk supply
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forecasting [32,45]. However, ProphetNN performs best during this three-month
period, (MAE = 0.38M). Both Prophet models overpredict milk supply at the
start and end of the year, when supply is lowest, as farms begin and end milking
for the year, when the Näıve model performs best (MAE = 0.37M). This result
suggests that an ensemble approach may be useful in future work, where different
models are used for different parts of the year. To summarize, the ProphetNN

compares better than the other models evaluated in terms of MASE, MAE, AE
and Kullback-Leibler Divergence score.

3 Providing Explainable Insights to Farmers

While providing forecasts on future milk supply from historical data can signif-
icantly enhance planning and resource allocation, the forecasts themselves do
not provide any information on how a farm could increase its future output and
boost profitability. One motivating reason for providing explanations to end-user
farmers is to aid them in improving their current practice [23]. In the context of
dairy farming this could translate into providing insights or recommendations
that will help farmers to boost future milk output from the farm. Our focus
in providing explanations to farmers is not on why a certain forecast is made
based on historic data, but instead it is on realizing steps that could be taken
to improve future yields.

3.1 Prefactual Explanations

A prefactual explanation describes a conditional (if-then) proposition about an,
as yet not undertaken, action and the corresponding outcome that may (or may
not) take place in the future [5,10]. While counterfactuals focus on past events,
prefactuals center on the future and capture the idea of something that is not
yet a fact, but could well become a fact [10].

In terms of goal planning, prefactual explanations can help individuals to de-
termine how and whether a certain goal may be achieved in the future, and plan
subsequent actions accordingly [10]. While counterfactual explanations have en-
joyed success in providing explanations for past events (most commonly in classi-
fication systems [8,9,21,22,43]), prefactual explanations are relatively untapped,
yet extremely promising for eXplainable AI (XAI) in forecasting scenarios. Per-
haps the most relevant work here is in the area of goal-based recommendation,
where CBR has been successfully applied to predict realistic new personal best
race times for athletes and to recommend a suitable training plan to achieve their
goals [12, 37]. Similarly, in predicting forage-loss estimates due to grasshopper
infestation, treatment recommendations have been provided that can help to
minimize future economic loss [4]. These prefactual explanations could be used
to provide insights to farmers that could help them to increase their milk out-
put in future years. In the next sub-section, we describe a novel framework to
formulate prefactual explanations, which is based on contrasting low-performing
herds with high-performing exemplar cases.
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Fig. 4: The distribution of total milk output from medium size dairy farms (75-
85 Cows, N=233 cases) over a four year period.

3.2 Using Prototypes in Prefactual Explanations

Prototypes are instances that are maximally representative of a class (typically
retrieved using class centroids [30]) and have been used in several problem do-
mains successfully to generate global explanations [13,26,30]. While there are no
specific class labels in our problem, one observation from the case-base is that
farms with a similar herd size (e.g., medium sized herds of ≈ 80 cows [39, 41])
tend to vary greatly in terms of their milk output over the four-year period cov-
ered in the dataset (see Figure 4). So, for a fixed herd-size, there are both high
performing herds with high milk yield, and low performing herds at the lower end
of the distribution. By leveraging information from the high performing exemplar
cases at the upper end of the distribution, lower-performing farms could modify
their management practices with a view to enhancing future returns (e.g., an
increased yield in the next year). More simply, prefactual explanations that use
high-performing farms as exemplars should provide a basis for informing farmers
on best practice. In the following sub-sections, we discuss the aspects of farm-
management that could be the subject of these prefactual recommendations,
with a view to identifying those that improve sustainability.

(I) Increasing herd size: As one might expect, there is a strong correlation
between the number of animals on a farm and milk yield across the whole case-
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Fig. 5: Comparing both the most and the least efficient farms (at the tails of
the distribution). The most efficient farms, in terms of milk output, calve much
faster than the least efficient farms.

base (Pearson’s r = 0.947). But, Figure 4 shows us that that many farms can
increase their yield without increasing the size of their herd. There are several
reasons why increasing herd size is not a good strategy for a farmer to take; (i)
it requires new investment to buy more animals, (ii) it increases running costs
of the herd (e.g., feed, fertilizer for grass, shelter, veterinary costs), estimated
to be €1516 per animal on an Irish farm in 2022 [14, 35], (iii) it increases the
likelihood of disease being introduced into a “closed” herd [35]. However, perhaps
the biggest issue is that it is not a sustainable strategy. A prefactual could tell
a farmer “You could boost your yield by 10% next year if you increase your
herd size by 10%”, but such advice will also increase the carbon-costs of the
farm and the potential for environmental damage and pollution (e.g., more cows
equals more methane). As such, a more sustainable strategy would be to improve
management practices without expanding the herd-size.

(II) Constraining calving: Dairy farmers using sustainable pasture-based
systems where cows are mainly fed on grass in fields, are now strongly advised to
control the timing of calving in their herds. Research has shown that constraining
calving to a 6-week window in spring can greatly improve milk yield and herd
fertility in pasture based-systems [35]. These benefits arise because after calving,
cows begin milk production just as grass growth starts to peak; so, the animals
ability to produce milk synchronises with the availability of sustainable feed
(i.e., grass as opposed to bought-in, carbon-heavy supplementary feeds, such
as soya or corn). Extended calving intervals result in the breakdown of the
synchrony between feed supply and feed demand and often result in reduced
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fertility, over-fat cows and an increased likelihood of disease in the herd [35].
All of these factors negatively impact milk yield and often lead to increases
in artificial insemination, veterinary and hormonal costs [3, 35]. Indeed, this
proposed relationship between calving-periods and milk yield is supported by
analyses of our dataset. We estimated on-farm calving efficiency by analysing
the mean amount of time taken between the calving of the 1/4 and 3/4 of calves
born on farms across the four year period. Using a fixed herd size for (i) the
top 20 performing exemplar herds, and (ii) the worst 20 performing herds (see
e.g., Figure 5), it was found that the best or exemplary herds calve significantly
faster than herds with lower milk yields (one sided t-test, p < 0.001). Therefore,
one useful prefactual explanation for farmers hoping to boost subsequent yield
could be of the form; “If you constrain calving to a shorter period than last year,
your future milk supply is likely to increase”.

(III) Optimizing the supply profile: To gain insights into the optimal sup-
ply profile for a herd, we compare the prototypical supply profile for both high-
performing herds and herds with the lowest supply for a fixed herd-size. Proto-
typical herds are created using centroids from: (i) k-medoids clustering with a
DTW distance measure as it retrieves realistic instances that are already part of
the case-base [30], and (ii) k-means clustering with dynamic barycenter averag-
ing as suggested by [34]. This analysis showed that exemplary herds have a much
shorter drying-off period compared to the weaker performing herds (See Figure
6). This “drying-off” period (which usually lasts 6-8 weeks) typically occurs at
the end of the year, when cows are not milked, to allow them to recover health-
wise before the next calving season [27]. Although this period plays a critical role
in rejuvenating an animal’s health, too long a dry period can result in over-fat
cows and reduced fertility. So, an extended dry period can reduce milk yield on
a given farm. While research suggests that drying off decisions should be made
on an individual cow basis [27], we found that lower performing herds tend to
have over-extended periods of no-milkings, hurting their yields. The prototyp-
ical supply curves for exemplar herds, unlike low-yielding herds, quickly grow
to reach their peak yield in early summer and slowly taper off towards the dry
period in late November/early-December. Indeed, their milk-supply curves track
the grass growth curves observed on farms during these periods (see Kenny et
al., [25]), where grass growth typically peaks in early May before tapering off
into Autumn. Therefore, one useful prefactual explanation for farmers hoping to
boost subsequent yield could be of the form; “If you slightly reduce the drying
off period, (i) your future milk supply is likely to increase as you will have longer
milking periods, (ii) you could be less reliant on purchasing feed as the supply
curve is more likely to track the grass growth curve.”.
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(a)

(b)

(c)

(d)

Fig. 6: Prototypical milk yield supply profiles over a four year period for high (in
blue) and low (in red) performing medium-sized herds according to prototypes
retrieved using the centroid from: (i) k-medoids DTW shown in (a) & (b), and
(ii) k-means DBA in (c) & (d).
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4 Conclusion and Future Directions

Facing the challenge of developing a precision agriculture that can support sus-
tainability, we have demonstrated a promising CBR data-augmentation tech-
nique, using nearest neighboring farms with similar production profiles, which
makes acceptably accurate long-term forecasts for milk supply based on low
resolution data. As milk-supply forecasting drives significant aspects of the agri-
cultural sector, better forecasting can play a critical role in reducing resource
waste from farm to factory and in budgeting-on farm. An immediate avenue for
future work is to investigate hyperparamater tuning on a validation set in an
attempt to boost predictive performance. We also explored the utility of CBR
in providing novel goal-oriented prefactual explanations to farmers to help them
realize actions that could boost milk yield in future years. A core novelty of
this work is in generating prefactual explanations through leveraging high per-
forming exemplar cases, and in future work we would like to develop alternative
algorithmic approaches to generate such explanations and to explore their utility
in domains beyond agriculture. All of the current work, demonstrates how CBR
and AI has the potential to improve farm-management practices in ways that
deliver a more efficient, less polluting and more sustainable agriculture.
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