
Deep-QPP: A Pairwise Interaction-based Deep Learning Model
for Supervised Query Performance Prediction

Suchana Datta
University College Dublin, Ireland
suchana.datta@ucdconnect.ie

Debasis Ganguly
University of Glasgow, UK

debasis.ganguly@glasgow.ac.uk

Derek Greene
University College Dublin, Ireland

derek.greene@ucd.ie

Mandar Mitra
Indian Statistical Institute, India

mandar@isical.ac.in

ABSTRACT
Motivated by the recent success of end-to-end deep neural models
for ranking tasks, we present here a supervised end-to-end neural
approach for query performance prediction (QPP). In contrast to
unsupervised approaches that rely on various statistics of document
score distributions, our approach is entirely data-driven. Further,
in contrast to weakly supervised approaches, our method also does
not rely on the outputs from different QPP estimators. In particular,
our model leverages information from the semantic interactions
between the terms of a query and those in the top-documents
retrieved with it. The architecture of the model comprises multiple
layers of 2D convolution filters followed by a feed-forward layer of
parameters. Experiments on standard test collections demonstrate
that our proposed supervised approach outperforms other state-of-
the-art supervised and unsupervised approaches.

CCS CONCEPTS
• Information systems→Query intent; Information retrieval
query processing.

KEYWORDS
Supervised Query Performance Prediction, Interaction-based Mod-
els, Convolutional Neural Networks
ACM Reference Format:
Suchana Datta, Debasis Ganguly, Derek Greene, and Mandar Mitra. 2022.
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Super-
vised Query Performance Prediction. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining (WSDM ’22), Feb-
ruary 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 9 pages. 
https://doi.org/10.1145/3488560.3498491

1 INTRODUCTION
The evaluation of information retrieval systems is a challenging
problem to solve outside the realm of the Cranfield paradigm [41],
i.e., in situations when there are no relevance assessments available,

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be 
honored. For all other uses, contact the Owner/Author(s).
WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9132-0/22/02..
https://doi.org/10.1145/3488560.3498491

such as those in deployed search systems used by real-life users
beyond the laboratory environment. Query performance prediction
(QPP) [8, 13, 39, 49, 51], therefore, remains an important and active
area of research, because of its usefulness in estimating the quality
of a retrieval system on a wide range of queries. The output of a QPP
estimator function 𝜙 (𝑄) is a likelihood score (∈ R), which given a
query𝑄 , predicts the retrieval quality of the query. It may therefore,
in a sense, be considered to represent how easy (or specific) the
query is, because the higher the predicted estimate, the higher is
the likelihood that a retrieval model will perform well for the query.

The majority of existing QPP methods relies on devising a suit-
able heuristic function for predicting the likelihood of how easy
a query will be for a retrieval system. Typically, this is estimated
by computing the probability of how specific or well-formulated
the query is. The specificity measures are computed using either:
i) an aggregate of collection statistics over query terms commonly
known as pre-retrieval QPP estimators [24, 25]; or by ii) leveraging
information from the top-retrieved documents, e.g., assessing the
skewness of document similarity scores [39, 51], or measuring the
topical differences between the set of top-retrieved documents and
the rest of the collection [13].

Supervised deep neural rankingmodels have recently been shown
to improve retrieval effectiveness over their unsupervised statistical
counterparts [17, 18, 23, 26, 45]. In contrast to preset similarity func-
tions (e.g. BM25 or LM), these supervisedmodels rely on data-driven
parametric learning of similarity functions, usually leveraging an
interaction mechanism between the similarities of the embedded
representations of constituent words of queries and their retrieved
documents [17, 23, 45].

While the benefits of using supervised approaches have predomi-
nantly been established for ranking [5, 12, 18, 26] and recommenda-
tion tasks [16, 29, 40, 44], the exploration of supervised approaches
for QPP has been limited. The only supervised QPP approach, that
we are aware of to the best of our knowledge at the time of writing
this paper, is the study [47] which used a combination of features
(such as retrieval scores) and word embedded vectors to learn an
optimal way of combining a number of different QPP estimates into
a single one, thereby outperforming the effectiveness achieved by
each individually. A major limitation of [47] is that the training
procedure involves weak supervision over a number of estimators
to find an optimal combination. In contrast, our proposed method
is solely data-driven because it does not rely on other estimators.
Moreover, our method is strictly supervised as opposed to the weak
supervision employed in [47].

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

201

https://doi.org/10.1145/3488560.3498491
https://doi.org/10.1145/3488560.3498491


Figure 1: While representation-based models rely on late inter-
action involving shared parameters (left), interaction-based mod-
els, on the other hand, make use of early interactions transforming
paired instances into a single input.

Contributions. In summary, the key contributions of this paper
include –
(1) An end-to-end supervised QPP model, where instead of

learning to optimize the relative importance of different predic-
tors [47], our model learns a comparison function of relative
specificity (estimated retrieval quality) between query pairs.

(2) Early interactions between query-document pairs, where
similar to the deep relevance matching model (DRMM) [23],
our model makes use of early interactions between a query and
its top-retrieved set of documents. We argue that this way of
constituting the input improves the model’s capacity to gen-
eralize better as opposed to the late interaction between the
content of the queries and the documents [47].

2 DEEP-QPP MODEL DESCRIPTION
We first describe the working principle of our approach which is
based on capturing term-semantics interaction at two levels, first,
at the intra-query level of modeling, the interaction between the
queries themselves and their top-retrieved documents, and then at
the inter-query level, to model their relative specificity measures.

2.1 Representation vs. Interaction
A fundamental difference between a representation-based model
and an interaction-based model [23] is illustrated in Figure 1. The
former first constructs a representation of each instance from a pair
of inputs, and then optimizes this representation so as to maximize
the likelihood of predicting a function involving this pair (as seen
from the left diagram of Figure 1). In contrast, an interaction-based
model first transforms a paired data instance into a single instance
via an interaction operator ⊕ : R𝑑 × R𝑑 ↦→ R𝑝 , where 𝑑 and 𝑝 are
the sizes of the raw and the transformed inputs, respectively.

We now discuss the type of interaction suitable for a supervised
deep QPP approach. For QPP, the objective function that should
be learned from the reference labels is a comparison between a
pair of queries, 𝑄𝑎 and 𝑄𝑏 . More concretely, this comparison is an
indicator of the relative difficulty between the queries, i.e., whether
𝑄𝑎 is more difficult than 𝑄𝑏 or vice versa.

While pre-retrieval QPP approaches only rely on the informa-
tion from a query itself (e.g., aggregate collection statistics for its
terms [24, 25]), it has been shown that post-retrieval approaches,
which make use of additional information from the top-retrieved
documents of a query [39, 51], usually perform better. Motivated by
this, we also include information from the top-retrieved documents

Figure 2: Unlike an entirely representation-based or interaction-
based model (Figure 1), our model combines the benefits of both
early and late interactions, to address: a) the interaction of the terms
in the top-retrieved documents of a query with the constituent
terms of the query itself; b) the characteristic pattern of these in-
teractions to estimate the comparison function 𝑦 (𝑄𝑎,𝑄𝑏 ) between
a pair of queries. Each individual query-document interaction is
shown with a different color.

in the form of early interactions (which we refer to as the intra-
query interactions). The parameters of these interactions are then
optimized with the help of a late interaction between the queries,
which seeks to capture the important characteristic differences of
these early interactions towards identifying which query among
the pair is easier. An overview of our model is shown in Figure 2.

2.2 Query-Document Interactions
In unsupervised post-retrieval QPP approaches, the interaction be-
tween the terms in a query and those of the top-retrieved set takes
the form of statically defined functions, which aim to capture how
distinct the top-retrieved set is with respect to the collection (e.g.,
NQC [39] uses the skewness of document retrieval scores, while
WIG [51] measures the information gain from the top-retrieved set
with respect to the collection). The intra-query interaction shown
in Figure 2 involves computing an interaction between the terms of
a query and those in its top-retrieved set of documents. This inter-
action then acts as an input source to learn an optimal specificity
function automatically from the data.

Documents to consider for interaction. A common principle
that works well as a specificity estimator for post-retrieval QPP
approaches, is to measure the distinctiveness between the set of
documents towards the top-ranks from the rest of the retrieved
set. The standard deviation of the document similarity scores in
NQC (i.e., expected difference from the average score), acts as an
estimate for the topic distinctiveness of the top set.

Motivated by this insight, in our approach, instead of using only
a set of top-𝑘 documents, we use information from both the upper
and the lower parts of a ranked list. The objective is to capture the
differences in the interaction patterns of a set of highly similar (the

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

202



upper part of a ranked list) and not-so-highly similar documents
(the lower part) as useful cues for QPP.

As notations, we denote the set of documents considered for
interaction with a query𝑄 as 𝑅(𝑄), which is comprised of a total of
𝑀 = 𝑡 + 𝑏 documents, including the top-𝑡 and the bottom-𝑏 ranked
ones. The index of the bottom-most document considered for inter-
action computation is specified by a parameter 𝑁 . This means that
the lower part of the ranked list, comprised of 𝑏 documents are, in
fact, those ranked from 𝑁 to 𝑁 −𝑏+1. For example, a value of 𝑡 = 10
and 𝑏 = 20 means that 𝑅(𝑄) = {𝐷1, . . . , 𝐷10} ∪ {𝐷81, . . . , 𝐷100}.

In our experiments, we treat 𝑡 and 𝑏 as hyper-parameters (see
Section 4.4), and restrict 𝑁 to a value of 100 because it is unlikely
that any evidence from documents beyond the top-100 would be
useful for the QPP task.

Interaction between each query term and a document. We
now describe how we compute the query-document interaction
matrices for each document 𝐷 ∈ 𝑅(𝑄) for a query 𝑄 . As a first
step, we calculate the cosine similarities between the embedded
representations of terms – one from the query 𝑄𝑎 and the other
from the document 𝐷𝑎

𝑖
. Similar to [23], the distribution of similar-

ities between the 𝑗 th query term 𝑞 𝑗 and constituent terms of 𝐷𝑎
𝑖

is then transformed into a vector of fixed length 𝑝 by the means
of computing a histogram of the similarity values over a partition
of 𝑝 equi-spaced intervals defined over the range of these values
(i.e. the interval [−1, 1)). The 𝛽th component (𝛽 = 1, . . . , 𝑝) of this
interaction vector is given by the count of how many terms yield
similarities that lie within the 𝛽th partition of [−1, 1), i.e.,

(𝑞 𝑗 ⊕ 𝐷𝑎
𝑖 )𝛽 =

∑
𝑤∈𝐷𝑎

𝑖

I
[ 2(𝛽 − 1)

𝑝
− 1 ≤

q𝑗 ·w
|q𝑗 | |w| <

2𝛽
𝑝

− 1
]
, (1)

where both q𝑗 ∈ R𝑑 and w ∈ R𝑑 , and the interaction vector 𝑞𝑖 ⊕
𝐷𝑎
𝑖
∈ R𝑝 , and I[𝑋 ] ∈ {0, 1} is an indicator variable which takes the

value of 1, if a property 𝑋 is true and 0 otherwise.

Example 2.1. If 𝑝 = 4, the interval [−1, 1) is partitioned into the
set {[−1,−0.5), [−0.5, 0), [0, 0.5), [0.5, 1)}. For a 3-term document
𝑑 , if the cosine similarities are 0.2, −0.3 and 0.4 with respect to a
query term 𝑞, then 𝑞 ⊕ 𝑑 = (0, 1, 2, 0).

Collection statistics based relative weighting. The speci-
ficity (i.e., collection statistics, such as idf) of query terms con-
tributes to the effective estimate of QPP scores both in pre-retrieval
and post-retrieval approaches. We, therefore, incorporate the idf
values of each query term as a factor within the interaction patterns
to relatively weigh the contributions from the interaction vectors
𝑞 𝑗 ⊕ 𝐷𝑎

𝑖
. In our proposed approach, we use a generalized version

of Equation 1, where we incorporate the idf factor as a part of the
interaction vector components, i.e.,

(𝑞 𝑗 ⊕𝐷𝑎
𝑖 )𝛽 = log( 𝑁0

𝑛(𝑞 𝑗 )
)

∑
𝑤∈𝐷𝑎

𝑖

I
[ 2(𝛽 − 1)

𝑝
−1 ≤

q𝑗 ·w
|q𝑗 | |w| <

2𝛽
𝑝
−1

]
,

(2)
where 𝑛(𝑞 𝑗 ) denotes the number of documents in the collection
where the 𝑗 th query term𝑞 𝑗 occurs, and𝑁0 denotes the total number
of documents in the collection.

Overall interaction between a query and a document. Each
𝑝-dimensional interaction vector computed for the 𝑗 th query term
forms the 𝑗 th row of the overall interaction matrix between the
query 𝑄𝑎 and the 𝑖th document 𝐷𝑎

𝑖
. The overall interaction matrix,

𝑄𝑎 ⊕ 𝐷𝑎
𝑖
∈ R𝑘×𝑏 is thus given by

𝑄𝑎 ⊕ 𝐷𝑎
𝑖 = [(𝑞1 ⊕ 𝐷𝑎

𝑖 )
𝑇 , . . . , (𝑞𝑘 ⊕ 𝐷𝑎

𝑖 )
𝑇 ]𝑇 , (3)

where 𝑘 is a preset upper limit of the number of terms in a query.
A zero-padding is used for the row indices exceeding the number
of query terms, i.e., (𝑞 𝑗 ⊕ 𝐷𝑎

𝑖
) = {0}𝑏 , ∀𝑗 > |𝑄𝑎 |. Referring back

to Figure 2, each 𝑘 × 𝑝 interaction matrix between a query 𝑄𝑎 and
a document 𝐷𝑎

𝑖
corresponds to a colored rectangle (shown in the

planes above the queries and documents).

Interaction between a query and its top-retrieved set. Fi-
nally, each individual document-query interaction matrix, when
stacked up one above the other in the order of the document ranks,
yields an interaction tensor of order𝑀 × 𝑘 × 𝑝 . Formally,

𝑄𝑎 ⊕ 𝑅(𝑄𝑎) =


𝑄𝑎 ⊕ 𝐷𝑎

1
. . .
. . .

𝑄𝑎 ⊕ 𝐷𝑎
𝑀

 (4)

2.3 Layered Convolutions for QPP
After constructing the local interactions of a query with its top-
retrieved set of documents, i.e. the intra-query interactions, the
next step is to extract convolutional features from the 3𝑟𝑑 order
interaction tensor,𝑄𝑎 ⊕ 𝑅(𝑄𝑎) ∈ R𝑀×𝑘×𝑏 between a query𝑄𝑎 and
its top-retrieved set 𝑅(𝑄𝑎). To this end, we first need to slice the
3𝑟𝑑 order tensor into separate matrices (2𝑛𝑑 order tensors), on each
of which, 2D convolution can be applied to extract distinguishing
features from the raw data of query-document interactions. Before
describing the ways to slicing the tensor into matrices in Section 2.4,
we first briefly describe the architecture that we employ to extract
useful features from the lower-dimensional slices of the interaction
tensor.

Brief background on 2D convolution. We do not explain the
background of 2D convolution operation [33] in detail. Formally
speaking, if X ∈ R𝑀×𝑃 represents an input data matrix, and if
W(l) ∈ R𝑘𝑙×𝑘𝑙 (𝑘𝑙 mod 2 = 1, i.e., 𝑘𝑙 an odd number) denotes the
kernel weight matrix of the 𝑙 th layer, conveniently represented as
(𝑊 (𝑙)

−⌊𝑘/2⌋ , . . . , 0, . . . ,𝑊
(𝑙)
⌊𝑘/2⌋ ), then the outputs of layer-wise convo-

lution, generally speaking, are given by

h(𝑙)𝑟,𝑐 = 𝑓 (𝑙) (
⌊𝑘/2⌋∑

𝑖=−⌊𝑘/2⌋

⌊𝑘/2⌋∑
𝑗=−⌊𝑘/2⌋

W(𝑙)
𝑖, 𝑗

h(𝑙−1)
𝑟+𝑖,𝑐+𝑗 ), (5)

for each 𝑙 = 1, . . . , 𝐿 (𝐿 being the total number of layers), where
h(𝑙−1) ∈ R𝑀 (𝑘−1)×𝑃 (𝑘−1) is the output obtained from the previous
layer of the convolution filter, with ℎ (1) =𝑋 ,𝑀 (1) =𝑀 and 𝑃 (1) = 𝑃 .
The function 𝑓 (𝑙) is an aggregation function that, generally speak-
ing, progressively reduces the size of the convolutional representa-
tions, h(𝑙) , across layers. Aggregation methods commonly applied
in computer vision include theMaxPooling [10, 43] andAvgPooling
[37] functions.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

203



Figure 3: Our proposed end-to-end QPP model comprising a Siamese network of shared parameters of layered convolutional feature extrac-
tion, followed by either i) merge (concatenation) and a fully connected (FC) layer with a Sigmoid loss for pairwise testing (Equation 7) yielding
a binary comparison indicator between a pair, or ii) a linear activation layer with pairwise hinge loss for pointwise testing yielding a score
for a given query (Equation 8). Since the interaction for MDMQ and SDSQ are matrices with a single row only, the two layers of convolution
filter sizes for these approaches are 1 × 5 and 1 × 3 (see Section 2.4).

Late interactions with convolutional features. A more de-
tailed view of the late interaction across a query pair is shown in
Figure 3. Referring to the notation from Equation 5, we employ
𝐿 = 2 (i.e. use a total of 2 convolution layers), and use 𝑘1 = 5
and 𝑘2 = 3 (i.e. a 5x5 filter for the first layer and a 3x3 for the
second one). The aggregate function, 𝑓 (𝑙) , of each layer 𝑙 is set to
the MaxPooling operation.

After extracting the convolutional features for each query vs. top-
documents interaction tensor (shown as the two cuboids towards
the extreme left of Figure 3), we employ the standard practice of
merging the convolutional filter outputs of each query into a single
vector (shown as the ‘merge’ operation) [7, 42]. Following themerge
operation, which now combines abstract features extracted from
the local interactions of the two queries into a single vector, we
apply a fully connected dense layer. Depending on whether we test
the network in a pointwise or pairwise manner, the loss function
is set to either the Sigmoid function or a function that seeks to
maximize the accuracy of the comparison function between pairs.
Section 3 provides more details on the network training process.

2.4 Reshaping the Interaction Tensor
There exists a number of different choices for slicing up the inter-
action tensor of Equation 4 into a set of matrices for the purpose of
separately applying 2D convolution on each and then combining
the features, shown as the reshaping function 𝜋 : R3 ↦→ R2 in
Figure 3. We now discuss each alternative and examine their pros
and cons in the context of the QPP problem.

As our nomenclature, we characterize reshaping functions by
whether the information across i) top-retrieved documents are
merged together, or across ii) query-terms are merged together.
A part of the name thus uses the characters D to denote the top-
retrieved set, and Q to denote query terms. To indicate ‘merging’, we
use the letter ‘M’ and to denote its counterpart, we use the letter ‘S’

(separate). For instance, the name MDMQ means that the information
from both top-documents and query terms are merged together.

MDMQ (Merged Documents Merged Query-terms). This is
the most coarse-grained way to reduce the dimensionality of the
interaction tensor of order 3 (Equation 4) by reducing the𝑀 ×𝑘 ×𝑝
tensor to a flattened vector of dimensionality𝑀𝑘𝑝 , which can still
be imagined to be a matrix of dimension 1 × 𝑀𝑘𝑝 allowing 1D
convolutions to be applied. This method extracts abstract features at
an aggregate level rather than for individual documents separately.
This may not be desirable because, in standard QPP methods such
as WIG and NQC, an individual contribution from each document
score is responsible for the predicted specificity measure.

SDMQ (Separate Documents Merged Query-terms). This
corresponds to the most natural way of grouping an interaction
tensor, 𝑄 ⊕ 𝑅(𝑄), by considering the 𝑖th row for each 𝑖 = 1, . . . , 𝑀 ,
𝑄 ⊕ 𝐷𝑖 , as a matrix of dimension 𝑘 × 𝑝 . This method allows the
extraction of abstract features from each document separately in
relation to the whole query. Thus, it takes into account the compo-
sitionality of the query terms, and at the same time avoids mixing
information across documents. This conforms to how most unsu-
pervised post-retrieval QPP methods actually work.

MDSQ (Merged Documents Separate Query-terms). Con-
trary to grouping the interaction tensor row-wise, for this method
we slice out the constituent matrices column-wise. Each matrix is
thus of dimension𝑀 × 𝑝 , and there are a total 𝑘 of them, on each
of which we apply 2D convolution for feature extraction. This QPP
method thus does not take into account the compositionality of the
constituent query terms while considering the semantic interac-
tions. Rather it treats the whole set of top-retrieved documents in
an aggregated manner, which is also somewhat counter-intuitive
because a document at the very top rank should be treated in a
different manner from the very bottom one, i.e. the one at𝑀 th rank.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

204



SDSQ (Separate Documents Separate Query-terms). This is
the most fine-grained approach, which considers every interaction
vector between the 𝑗 th query term and 𝑖th document (see Equation
2 as a separate candidate for convolutional feature extraction. Each
such interaction vector between a query-term and a document is
of dimension 𝑝 and there are a total of 𝑀𝑘 such vectors. As with
the MDMQ approach, we apply 1D convolution on these vectors.

A point to note is that, although Figure 3 shows the convolution
filters as 5 × 5 and 3 × 3, for MDMQ and SDSQ approaches, these
filters are of size 1 × 5 and 1 × 3 respectively.

3 DEEP-QPP TRAINING
The network in Figure 3 is trainedwith instances of query pairs with
two different objectives – pointwise and pairwise. In the pairwise
case, the network directly learns the comparison function, i.e. a
binary indicator of the anti-symmetric relation between a query
pair. On the other hand, the pointwise objective aims to predict
a QPP score, instead of the relative order of specificity between a
pair. Before describing the objectives, we first provide details on
obtaining the data instances and the reference labels.

3.1 Instances and Ground-truth Labels
Given a training set of queries Q = {𝑄1, . . . , 𝑄𝑚}, we construct the
set of all unordered pairs of the form (𝑄𝑎, 𝑄𝑏 ), where ∀𝑎, 𝑏 ≤ 𝑚
and 𝑏 > 𝑎. The reference label, 𝑦 (𝑄𝑖 , 𝑄 𝑗 ), of a paired instance is
determined by a relative comparison of the retrieval effectiveness
obtained by a system with a target metric. The retrieval effective-
ness, in turn, is computed with the help of available relevance
assessments. Formally speaking, if M denotes an IR evaluation
measure (e.g., average precision or AP), which is a function of i)
the known set of relevant documents - R(𝑄) for a query 𝑄 ∈ Q,
and ii) the set of documents retrieved with a model A (e.g., LM-Dir
[50]), then

𝑦 (𝑄𝑎, 𝑄𝑏 ) = sgn(M(𝑄𝑎 ;R(𝑄𝑎)) −M(𝑄𝑏 ;R(𝑄𝑏 ))), (6)

where sgn(𝑥) = 0 if 𝑥 ≤ 0 or 1 otherwise.
For all our experiments, we used AP@100 and nDCG@20 as the

target metric M. As the IR model, A, we employ LM-Dir with the
smoothing parameter 𝜇 = 1000 following QPP literature [39]. We
emphasize that the results of our experiments are mostly insensi-
tive to the choice of either the target metric used or the IR model
employed.

3.2 Pairwise Objective
For the pairwise objective, the Deep-QPP model is trained to maxi-
mize the likelihood of correctly predicting the indicator value of
the comparison between a given pair of queries. The purpose here
is to learn a data-driven generalization of the comparison function.
During the testing phase, the model outputs a predicted value of the
comparison between a pair of queries unseen during the training
phase. The output layer for the pairwise objective thus constitutes
a Sigmoid layer, predicting values of 𝑦 (𝑄𝑎, 𝑄𝑏 ) (see Equation 6)
as a function of the network parameters denoted as 𝑦 (𝑄𝑎, 𝑄𝑏 ;Θ).
During the training phase, the parameter updates seek to minimize
the standard square loss

L(𝑄𝑎, 𝑄𝑏 ) = (𝑦 (𝑄𝑎, 𝑄𝑏 ) − 𝑦 (𝑄𝑎, 𝑄𝑏 ;Θ))2 (7)

Coll #Docs Topic Set |Q | Avg. Q_len Avg. #Rel

Disks 4 & 5 528,155 TREC-Rb 249 2.68 71.21
CWeb09B-S70 29,038,220 TREC-Web 200 2.42 16.03

Table 1: Dataset Characteristics (the suffix ‘S70’ indicates that doc-
uments detected as spams with confidence scores higher than 70%
were removed from the collection).

between the ground-truth and the predicted labels.

3.3 Pointwise Objective
For pointwise testing, as a test input, the network takes a single
query 𝑄 , as opposed to the pair of queries in the pairwise situation
from Section 3.2. Instead of predicting a binary indicator compar-
ison, the network predicts a score 𝑦 (𝑄 ;Θ) that can be used as an
estimated measure of specificity of 𝑄 . To allow for pointwise test-
ing, the output from the shared layer of parameters goes into a
linear activation unit predicting a real-valued score 𝑦 (𝑄 ;Θ), which
is a function of one query (rather than a pair), as can be seen from
the bottom-right part of the Figure 3. Rather than training the net-
work on a merged representation of a query pair, the loss function
includes separate contributions from the two parts of the network
corresponding to each query, the objective being to update the
parameters for maximizing the comparison agreements between
the reference and the predicted scores. Specifically, we minimize
the following hinge loss:

L(𝑄𝑎, 𝑄𝑏 ) = max(0, 1 − sgn(𝑦 (𝑄𝑎, 𝑄𝑏 ) · (𝑦 (𝑄𝑎 ;Θ) − 𝑦 (𝑄𝑏 ;Θ)))) .
(8)

4 EXPERIMENTS
4.1 Datasets and Hyper-parameters

Collections. We experiment with two standard ad-hoc IR test
collections, namely the TREC Robust (comprised of news articles)
and the ClueWeb09B [11] (comprised of crawled web pages). For
the ClueWeb experiments, we used the Waterloo spam scores [4] to
remove documents which were detected to be spamwith confidence
> 70%. We denote this subset as CWeb09B-S70 in Table 1.

Train and test splits. Since our proposed Deep-QPP method is
a supervised one, the method first requires a training set of queries
to learn the model parameters and then a test set for evaluating
the effectiveness of the model. Following the standard convention
in the literature, e.g. [39, 47, 49], we employ repeated partitioning
(specifically, 30 times) of the set of queries into 50:50 splits and
report the average values of the correlation metrics (see Section
4.3) computed over the 30 splits.

A major difference of our setup compared to existing QPP ap-
proaches is the use of the training set. While the training set for
unsupervised approaches serve the purpose of tuning the hyper-
parameters of a model by grid search, in our case, it involves updat-
ing the learnable parameters of the neural model by methods such
as stochastic gradient descent.

Hyper-parameter tuning. Themost common hyper-parameter
for existing unsupervised QPP approaches is the number of top-𝑀

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

205



documents considered for computing the statistics on the document
retrieval scores, as in NQC and WIG, or to estimate a relevance
feedback model, as in Clarity and UEF (see Section 4.2 for more
details). We tune this parameter via grid search on the training
partition. As prescribed in [47], the values used in grid search were
{5, 10, 15, 20, 25, 50, 100, 300, 500, 1000}.

4.2 Baselines
We compare our supervised Deep-QPP approach with a number
of standard unsupervised QPP approaches, and also a more recent
weak supervision-based neural approach [47]. In our investigation,
we do not include QPP methods that leverage external information,
such as query variants [6]. Using query variants has been shown
to improve the effectiveness of unsupervised QPP estimators and
it is also likely that including them in our supervised end-to-end
approach will may also lead to further improvement in its perfor-
mance. However, since the main objective of our experiments is to
investigate if a deep QPP model can outperform existing ones, we
leave the use of external data for future exploration. Moreover, we
also do not include the pre-retrieval QPP approaches, such as avg.
idf etc., because they have been reported to be outperformed by post-
retrieval approaches in a number of existing studies [13, 39, 47, 51].

4.2.1 Unsupervised Approaches. This refers to existing methods
that make use of term weight heuristics to measure the specificity
estimates of queries. The underlying common principle on which
all these methods rely is the assumption that, if the set of top-
documents retrieved for a query is substantially different from the
rest of the collection, then the query is likely to be indicative of
unambiguous information need. This makes it a potentially good
candidate for achieving effective retrieval results. These methods
mainly differ in the way in which they calculate the similarity of
the top-retrieved set of documents from the rest of the collection.

Clarity [13]. This method estimates a relevance model (RLM)
[28] distribution of term weights from a set of top-ranked docu-
ments, and then computes its KL divergence with the collection
model - the higher the KL divergence (a distance measure) the
higher is the query specificity.

WIG [51]. As its specificity measure, weighted information gain
(WIG) uses the aggregated value of the information gain with each
document (with respect to the collection) in the top-retrieved set.
The more topically distinct a document is from the collection, the
higher its gain will be. Hence, the average of these gains character-
izes how topically distinct is the overall set of top-documents.

NQC [39]. Normalized query commitment (NQC) estimates the
specificity of a query as the standard deviation of the RSV’s of the
top-retrieved documents with the assumption that a lower deviation
from the average (indicative of a flat distribution of scores) is likely
to represent a situation where the documents at the very top ranks
are significantly different from the rest. NQC thus makes use of
not only the relative gain of a document score from the collection
(similar toWIG) but also the gain in a document’s score with respect
to the average score.

UEF [38]. The UEFmethod assumes that information from some
top-retrieved set of documents are more reliable than others. As

a first step, the UEF method estimates how robust is a set of top-
retrieved documents by checking the relative stability in the rank
order before and after relevance feedback (by RLM). The higher the
perturbation of a ranked list post-feedback for a query, the greater
is the likelihood that the retrieval effectiveness of the initial list
was poor, which in turn suggests that a smaller confidence should
be associated with the QPP estimate of such a query.

4.2.2 Supervised Approaches. Our choice of supervised baselines
is guided by two objectives - first, to show that (strong) supervision
using the ground-truth of relative query performance is better than
the existing approach of weak supervision on QPP estimation func-
tions [47], and second, to demonstrate that a mixture of both early
and late interactions (i.e., a hybrid of both content and interaction-
focused approaches) is better than purely content-based ones (see
Figures 1 and 2).

Weakly Supervised Neural QPP (WS-NeurQPP) [47]. The
main difference between WS-NeurQPP and Deep-QPP lies in the
source of information used and also the objective of the neural end-
to-endmodels. WS-NeurQPP uses weak supervision to approximate
the scores of individual QPP estimators so as to learn an optimal
combination. As inputs, it uses the retrieval scores, along with the
word embedded vectors. However, in contrast to our approach,
it does not use interactions between terms and is hence a purely
representation-based approach.

Siamese Network (SN). This approach is an ablation of the
Deep-QPP model (Figure 3). Here instead of feeding in the interac-
tion tensors between a query and its top-retrieved documents, we
simply input the dense vector representations of queries in pairs.
We experiment with two different types of dense vector inputs -
one where we used pre-trained RoBERTa vectors [30] obtained
using the HuggingFace library [2], and the other, where we used
the sum of the Skipgram [31] word embedded vectors (trained on
the respective target collections) of constituent terms as the dense
representation of a query for input. We name these two ablations
as SN-BERT and SN-SG, respectively.

No Intra-Query Interaction. As another ablation of Deep-
QPP, we only use the interaction between the terms of the query
pairs themselves. The interaction tensor between a pair of queries
is a 2𝑛𝑑 order tensor, i.e., a 𝑘 ×𝑝 matrix. This is a purely interaction-
based method, and in principle, is similar to DRMM [23], with the
added layer of 2D convolutions. We denote this baseline as DRMM.

4.3 Experiment Settings
Implementation. We used the Java API of Lucene 8.8 [1] for

indexing and retrieval; also to implement the existing unsupervised
QPP baselines (e.g., for calculating the document and collection sta-
tistics). The supervised baseline - WS-NeurQPP, and our proposed
method - Deep-QPP, were both implemented in Keras [3]. The code
for our proposed method is available for research purposes1.

Metrics. Recall from Section 3 that the Deep-QPP model can
be trained using either the pairwise and the pointwise objectives.
The pointwise test use-case is the standard practice in existing QPP

1https://github.com/suchanadatta/DeepQPP.git

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

206



Metric : AP@100 Metric : nDCG@20

TREC-Robust ClueWeb09B TREC-Robust ClueWeb09B

Methods Pairwise Pointwise Pairwise Pointwise Pairwise Pointwise Pairwise Pointwise

Accuracy P-𝜌 K-𝜏 Accuracy P-𝜌 K-𝜏 Accuracy P-𝜌 K-𝜏 Accuracy P-𝜌 K-𝜏

Clarity [13] 0.6251 0.4863 0.3140 0.6120 0.1911 0.0641 0.6118 0.3529 0.2462 0.6101 0.0923 0.0714
NQC [39] 0.6720 0.5269 0.4041 0.7030 0.2654 0.1518 0.6689 0.4261 0.3017 0.6916 0.3105 0.1987
WIG [51] 0.6613 0.5440 0.4279 0.6829 0.2492 0.1920 0.6629 0.3915 0.2407 0.6710 0.2780 0.1823
UEF [38] 0.6941 0.5523 0.4154 0.7217 0.3162 0.1959 0.6792 0.5029 0.3510 0.6925 0.3320 0.1854

SN-BERT 0.6613 0.5208 0.4169 0.6902 0.2317 0.1441 0.6529 0.5023 0.3624 0.6724 0.2241 0.1334
SN-SG 0.6349 0.5112 0.3987 0.6273 0.2110 0.1154 0.6147 0.4736 0.3561 0.6231 0.2049 0.1283
DRMM 0.5871 0.4730 0.3710 0.6023 0.2014 0.1141 0.5629 0.4038 0.3119 0.6004 0.1927 0.1201
WS-NeurQPP[47] 0.8123 0.7215 0.5090 0.7727 0.5192 0.2828 0.7973 0.5913 0.4126 0.7614 0.3928 0.2337

Deep-QPP (MDMQ) 0.7857 0.6988 0.4981 0.7414 0.4636 0.2495 0.7632 0.5649 0.3619 0.7189 0.3509 0.2185
Deep-QPP (SDSQ) 0.7210 0.6303 0.4018 0.6844 0.4208 0.2401 0.7284 0.5112 0.3065 0.6753 0.3124 0.2014
Deep-QPP (MDSQ) 0.8006 0.7203 0.4989 0.7426 0.4840 0.2575 0.7824 0.5601 0.3245 0.7037 0.3518 0.2100
Deep-QPP (SDMQ) 0.8420 0.7404 0.5434 0.8045 0.5532 0.3130 0.8371 0.6315 0.4614 0.7903 0.4431 0.2554

Table 2: A comparison of the QPP effectiveness between Deep-QPP, and a set of unsupervised and supervised baselines (shown in the 1𝑠𝑡 and
the 2𝑛𝑑 groups, respectively). The average accuracy and the correlation values (see Section 4.3) of Deep-QPP over the best performing baseline
- WS-NeurQPP, are statistically significant (t-test with over 97% confidence).

studies, where given a query, a QPPmodel predicts a score indicative
of the retrieval effectiveness. For this use-case, we evaluate the
effectiveness of the QPP methods with standard metrics used in
the literature: a) Pearson’s-𝜌 correlation between the AP values
of the queries in the test-set and the predicted QPP scores; b) a
ranking correlation measure, specifically Kendall’s 𝜏 between the
ground-truth ordering (increasing AP values) of the test-set queries
and the ordering induced by the predicted QPP scores.

In pairwise testing, the network is presented with pairs of queries
from the test set, for which it then predicts binary indications of the
relative order of queries within the pairs. As a QPP effectiveness
measure, we report the average accuracy of these predictions, i.e.
whether a predicted relation as given by the Sigmoid output from
Deep-QPP, 𝑦 (𝑄𝑎, 𝑄𝑏 ;Θ), matches the ground-truth that 𝐴𝑃 (𝑄𝑎) <
𝐴𝑃 (𝑄𝑏 ). Since𝑦 (𝑄𝑎, 𝑄𝑏 ;Θ) ∈ [0, 1], we binarize this value to {0, 1}
with the threshold of 0.5, thus indicating a prediction of whether
𝑄𝑎 is a more difficult query than 𝑄𝑏 or vice versa.

Deep-QPPhyper-parameters. For theDeep-QPPmethod (and
also for the semantic analyzer component of the weakly supervised
baseline WS-NeurQPP), we use skip-gram word vectors of dimen-
sion 300 trained on the respective document collections with a win-
dow size of 10 and 25 negative samples. Another hyper-parameter
in Deep-QPP is the number of intervals (bins) 𝑝 used to compute
the interactions in Equation 2. In Table 2, we report results with
𝑝 = 30 (as per the settings of the DRMM paper [23]), and later
investigate the effect of varying this parameter on the effectiveness
of Deep-QPP (results in Figure 6).

We observed that, after a number of initial experiments, exclud-
ing the idf of terms in the interaction tensors always produced
worse results than when including them. Therefore, in all our ex-
periments with Deep-QPP, we use the idf-weighted interactions
(Equation 2), and do not report the results obtained with Equation

1 for brevity. Another hyper-parameter that we use in the Deep-
QPP model to avoid over-fitting is the dropout probability, which
we set to 0.2 as per the initial trends in our experimental findings.

4.4 Results
Table 2 presents the QPP results for all the methods investigated.
Firstly, we observe that the existing supervised approach for QPP,
WS-NeurQPP, outperforms the unsupervised approaches (NQC,
WIG and UEF), which conforms to the observations reported in [47].
Secondly, we observe that the ablation baselines of Deep-QPP in-
volving a purely representation-based approach (SN-BERT and
SN-SG), or a purely interaction-based one (DRMM), perform worse
than Deep-QPP. This is mainly because these baselines lack the
additional source of information – interactions of queries with the
top-retrieved set of documents, which Deep-QPP is able to leverage
from. This observation also reflects the fact that post-retrieval QPP
approaches, with the additional information from top-documents,
typically outperform pre-retrieval ones [39].

Third and most importantly, we observe that Deep-QPP outper-
forms WS-NeurQPP, which confirms the hypothesis that explic-
itly learning the relative specificity of query pairs with an end-to-
end (strongly) supervised model is better able to generalize than a
weakly supervised approach which learns an optimal combination
of statistical predictors.

Another observation is that the SDMQ version of the reshaping
function 𝜋 : R3 ↦→ R2 (see Section 2.4 and Figure 3) turns out to
be the most effective, as we might expect. This also conforms to
the way in which unsupervised QPP approaches generally work,
i.e., by first making use of the information from each top-retrieved
document (e.g. its score in NQC and WIG) and then computing
an aggregate function over them (e.g. their variance in NQC, and
relative gains in WIG).

To further compare Deep-QPP to WS-NeurQPP, we report the
training-time efficiency of both approaches in Figure 4. Due to

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

207



1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Epochs

C
um

ul
at
iv
e
tr
ai
ni
ng

ti
m
e
(m

in
s.
)

(a) TREC-Robust

Deep-QPP (SDMQ)
WS-NeurQPP

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Epochs

C
um

ul
at
iv
e
tr
ai
ni
ng

ti
m
e
(m

in
s.
)

(b) ClueWeb09

Deep-QPP (SDMQ)
WS-NeurQPP

Figure 4: Deep-QPP, in addition to being more effective than WS-
NeurQPP, also outperformsWS-NeurQPP in terms of training time
because of a much smaller number of parameters (1.9M vs. 4.7M).

0 5 10 15 200.2

0.4

0.6

0.8

1

𝑡

A
cc
ur

ac
y

(a) TREC-Robust

𝑏=0
𝑏=5
𝑏=10
𝑏=15
𝑏=20

0 5 10 15 200.2

0.4

0.6

0.8

1

𝑡

A
cc
ur

ac
y

(b) ClueWeb09

𝑏=0
𝑏=5
𝑏=10
𝑏=15
𝑏=20

Figure 5: Sensitivity of Deep-QPP on the number of top (𝑡 ) and bot-
tom (𝑏) documents to include for interaction computation (see Sec-
tion 2.2) on QPP effectiveness. The limiting case of (𝑡, 𝑏) = (0, 0)
corresponds to the situation when we simply use the interaction be-
tween query terms themselves (i.e. the DRMM baseline).

a much larger number of trainable parameters and larger input
dimensionality (dense word vectors instead of interactions between
the dense vectors), WS-NeurQPP turns out to be taking a much
larger time to execute than Deep-QPP. The total number of trainable
parameters ofWS-NeurQPP is 4.7Mwhich is about 2.5X the number
of parameters in Deep-QPP (1.9M).

Hyper-parameter Sensitivity of Deep-QPP. Figure 5 shows
that using the top-10 and the bottom-10 documents for the interac-
tion computation (Section 2.2) yields the best results, which shows
that neither a too small nor too large a number of documents should
be used as inputs for learning the QPP comparison function.

Figure 6 shows the effects of different bin-sizes, 𝑝 (of Equation
2), used to compute the interactions between queries and the docu-
ments retrieved at top and bottom ranks. A value of 30 turned out
to be optimal, which is similar to the reported optimal value of the
bin-size for interaction computation in the LTR task [23].

5 RELATEDWORK
We have already discussed a number of existing QPP methods as
a part of the description of the baselines in Section 4.2. We now
outline additional QPP work, and also cover some recent work on
applications of end-to-end learning in IR. Kurland et. al. [27] showed
that the QPP task is equivalent to ranking clusters of similar docu-
ments by their relevance with respect to a query. Zendel et. al. [49]
made use of alternative expressions of information needs, such as

10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

𝑝 (Bin-size)

M
et
ri
c
(A

cc
ur

ac
y/
𝜌
/𝜏
)

(a) TREC-Robust

Accuracy
Pearson’s-𝜌
Kendall’s-𝜏

10 20 30 40 50
0.2

0.4

0.6

0.8

1

𝑝 (Bin-size)

M
et
ri
c
(A

cc
ur

ac
y/
𝜌
/𝜏
)

(b) ClueWeb09

Accuracy
Pearson’s-𝜌
Kendall’s-𝜏

Figure 6: Sensitivity of Deep-QPP w.r.t. the bin-size, 𝑝.

variants of a given query, to improve QPP effectiveness. The study
[21] reported that a spatial analysis of vector representations of
top-retrieved documents provide useful cues for improving QPP ef-
fectiveness – a hypothesis that our data-driven model also includes,
through the convolutions over the interaction matrices. Other stan-
dard deviation-based approaches, somewhat similar to NQC, have
also been reported to work well for the QPP task [14, 15]. Apart
from the weakly supervised neural approach of WS-NeurQPP [47],
a QPP unsupervised approach that uses cluster hypothesis of word
vectors in an embedded space was proposed in [35].

Recent studies have reported a close association between the
findings of learning to rank (LTR) and QPP studies. It was reported
that the set of features that are useful for LTR also proves beneficial
for QPP [9, 19]. Moreover, the mechanism of two levels of interac-
tion (both between queries and documents, and across queries) has
also been reported to be useful for LTR [32].

In addition to DRMM [23], other work proposing end-to-end
LTR approaches include [45, 48]. The ColBERT model was recently
proposed in [26], which is a fine-tuned BERT model [20] using
pairwise ranking loss. As a precursor to end-to-end supervised ap-
proaches, unsupervised approaches have addressed term semantics
by using dense word vectors, including [22, 34, 36] which used
skip-gram vectors and the work of [46] which employed BERT.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed Deep-QPP, a data-driven end-to-
end neural framework for the task of query performance prediction
in ad-hoc retrieval. Rather than relying on statistical term weight-
ing heuristics or employing a weakly-supervised model on those
heuristics, our method directly learns from the data, where the
input consists of a set of queries, along with their top-retrieved
sets of documents. The ground-truth for training is comprised of
the true query performance indicators (e.g., measured with AP).
Our experiments, conducted on standard news and Web collec-
tions, demonstrated that a data-driven approach trained on query
pairs with known QPP indications (e.g., AP values) is able to ef-
fectively generalize this comparison function for unseen query
pairs. The improvement percentages obtained for Web queries are
in fact higher which suggest that, in future we could potentially use
pseudo-relevance information in the context of query logs, such as
clicks and dwell times, to train QPP models at a large scale.

Acknowledgement. The first and the third authors were partially
supported by the Science Foundation Ireland (SFI) grant number
SFI/12/RC/2289_P2.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

208



REFERENCES
[1] 2021. Apache Lucene. https://lucene.apache.org/. Accessed: 2021-08-13.
[2] 2021. Huggingface Transformers. https://huggingface.co/transformers/. Ac-

cessed: 2021-08-13.
[3] 2021. Keras. https://keras.io/. Accessed: 2021-08-13.
[4] 2021. Waterloo Spam Rankings for the ClueWeb09 Dataset. https://plg.uwaterloo.

ca/~gvcormac/clueweb09spam/. Accessed: 2021-08-13.
[5] Nima Asadi, Donald Metzler, Tamer Elsayed, and Jimmy Lin. 2011. Pseudo Test

Collections for Learning Web Search Ranking Functions. In Proc. of the ACM
SIGIR ’11. 1073–1082.

[6] Olga Butman, Anna Shtok, Oren Kurland, and David Carmel. 2013. Query-
Performance Prediction Using Minimal Relevance Feedback. In Proc. of ICTIR ’13.
14–21.

[7] Adam Byerly, Tatiana Kalganova, and Ian Dear. 2020. A Branching and Merging
Convolutional Network with Homogeneous Filter Capsules. CoRR abs/2001.09136
(2020).

[8] David Carmel, Elad Yom-Tov, Adam Darlow, and Dan Pelleg. 2006. What Makes
a Query Difficult?. In Proc. of the 29th ACM SIGIR ’06. 390–397.

[9] Adrian-Gabriel Chifu, Léa Laporte, Josiane Mothe, and Md Zia Ullah. 2018. Query
Performance Prediction Focused on Summarized Letor Features. In Proc. of the
41st ACM SIGIR. 1177–1180.

[10] Vincent Christlein, Lukas Spranger, Mathias Seuret, Anguelos Nicolaou, Pavel
Král, and Andreas Maier. 2019. Deep Generalized Max Pooling. 2019 International
Conference on Document Analysis and Recognition (ICDAR) (2019), 1090–1096.

[11] C. Clarke, Nick Craswell, I. Soboroff, and G. Cormack. 2010. Overview of the
TREC 2010 Web Track. In TREC.

[12] Daniel Cohen, John Foley, Hamed Zamani, James Allan, and W. Bruce Croft.
2018. Universal Approximation Functions for Fast Learning to Rank: Replacing
Expensive Regression Forests with Simple Feed-Forward Networks. In Proc. of
the 41st ACM SIGIR ’18. 1017–1020.

[13] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. 2002. Predicting Query
Performance. In Proc. of the 25th ACM SIGIR ’02. 299–306.

[14] Ronan Cummins. 2014. Document Score Distribution Models for Query Perfor-
mance Inference and Prediction. ACM Trans. Inf. Syst. 32, 1, Article 2 (2014).

[15] Ronan Cummins, Joemon Jose, and Colm O’Riordan. 2011. Improved Query
Performance Prediction Using Standard Deviation. In Proc. the 34th ACM SIGIR
’11. 1089–1090.

[16] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are
We Really Making Much Progress? A Worrying Analysis of Recent Neural Rec-
ommendation Approaches. CoRR abs/1907.06902.

[17] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
Neural Networks for Soft-Matching N-Grams in Ad-Hoc Search. In Proc. of the
Eleventh ACM WSDM ’18. 126–134.

[18] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proc. of the 40th
ACM SIGIR ’17. 65–74.

[19] Sébastien Déjean, Radu Tudor Ionescu, Josiane Mothe, and Md Zia Ullah. 2020.
Forward and backward feature selection for query performance prediction. Pro-
ceedings of the 35th Annual ACM Symposium on Applied Computing (2020).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805.

[21] Fernando Diaz. 2007. Performance Prediction Using Spatial Autocorrelation. In
Proc. of the 30th ACM SIGIR ’07. 583–590.

[22] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth J.F. Jones. 2015.
Word Embedding Based Generalized Language Model for Information Retrieval.
In Proc. of the 38th ACM SIGIR ’15. 795–798.

[23] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-Hoc Retrieval. In Proc. of the 25th ACM CIKM ’16. 55–64.

[24] Claudia Hauff. 2010. Predicting the Effectiveness of Queries and Retrieval Systems.
SIGIR Forum 44, 1 (Aug. 2010), 88.

[25] Claudia Hauff, Djoerd Hiemstra, and Franciska de Jong. 2008. A Survey of Pre-
Retrieval Query Performance Predictors. In Proc. of the 17th ACM CIKM ’08.
1419–1420.

[26] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. 39–48.

[27] Oren Kurland, Fiana Raiber, andAnna Shtok. 2012. Query-Performance Prediction
and Cluster Ranking: Two Sides of the Same Coin. In Proc. of the 21st ACM CIKM
’12. 2459–2462.

[28] Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language Models.
In Proc. of SIGIR ’01. 120–127.

[29] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural Attentive Session-Based Recommendation. In Proc. of the ACM CIKM ’17.
1419–1428.

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach.

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proc. of the 26th NIPS ’13 - Volume 2. 3111–3119.

[32] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In Proc. of the 26th
WWW ’17. 1291–1299.

[33] A. Rodríguez-Sánchez, M. Fallah, and A. Leonardis. 2015. Editorial: Hierarchical
Object Representations in the Visual Cortex and Computer Vision. Frontiers in
Computational Neuroscience 9 (2015).

[34] Dwaipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur, and Mandar
Mitra. 2018. Using Word Embeddings for Information Retrieval: How Collection
and Term Normalization Choices Affect Performance. In Proc. of the 27th ACM
CIKM’18. 1835–1838.

[35] Dwaipayan Roy, Debasis Ganguly, Mandar Mitra, and G. Jones. 2019. Estimating
Gaussian mixture models in the local neighbourhood of embedded word vectors
for query performance prediction. Information Processing Management 56 (2019),
1026–1045.

[36] Dwaipayan Roy, Debasis Ganguly, Mandar Mitra, and Gareth J.F. Jones. 2016.
Word Vector Compositionality Based Relevance Feedback Using Kernel Density
Estimation. In Proc. of CIKM’16. 1281–1290.

[37] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. A
Latent Semantic Model with Convolutional-Pooling Structure for Information
Retrieval. In Proc. of CIKM’14. 101–110.

[38] Anna Shtok, Oren Kurland, and David Carmel. 2010. Using Statistical Decision
Theory and Relevance Models for Query-Performance Prediction. In Proc. of
SIGIR’10. 259–266.

[39] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. 2012.
Predicting Query Performance by Query-Drift Estimation. ACM Transactions on
Information System 30, 2, Article 11 (2012), 35 pages.

[40] Elena Smirnova and Flavian Vasile. 2017. Contextual Sequence Modeling for
Recommendation with Recurrent Neural Networks. In Proc. of the 2nd Workshop
on DLRS’17. 2–9.

[41] Ellen M. Voorhees. 2001. The Philosophy of Information Retrieval Evaluation. In
Proc. of CLEF’01. 355–370.

[42] Kunfu Wang, Pengyi Zhang, and Jian Su. 2020. A Text Classification Method
Based on the Merge-LSTM-CNN Model. 1646 (2020), 012110.

[43] Haibing Wu and Xiaodong Gu. 2015. Max-Pooling Dropout for Regularization of
Convolutional Neural Networks. In Proc. of NIPS’15, Sabri Arik, Tingwen Huang,
Weng Kin Lai, and Qingshan Liu (Eds.). 46–54.

[44] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A Neural Influence Diffusion Model for Social Recommendation. In Proc. of the
42nd ACM SIGIR’19. 235–244.

[45] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-Hoc Ranking with Kernel Pooling. In Proc. of the 40th
ACM SIGIR’17. 55–64.

[46] Zeynep Akkalyoncu Yilmaz, S. Wang, W. Yang, Haotian Zhang, and Jimmy J. Lin.
2019. Applying BERT to Document Retrieval with Birch. In Proc. of EMNLP and
the 9th International Joint Conference on NLP. 19–24.

[47] Hamed Zamani, W Bruce Croft, and J Shane Culpepper. 2018. Neural Query
Performance Prediction Using Weak Supervision from Multiple Signals. In Proc.
of the 41st ACM SIGIR’18. Association for Computing Machinery, New York, NY,
USA, 105–114.

[48] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural Ranking Models with Multiple Document Fields. In Proc. of the
Eleventh ACM WSDM’18. 700–708.

[49] Oleg Zendel, Anna Shtok, Fiana Raiber, Oren Kurland, and J. Shane Culpepper.
2019. Information Needs, Queries, and Query Performance Prediction. In Proc. of
the 42nd ACM SIGIR’19. 395–404.

[50] Chengxiang Zhai and John Lafferty. 2001. A Study of Smoothing Methods
for Language Models Applied to Ad Hoc Information Retrieval. In Proc. of the
24th ACM SIGIR’01. Association for Computing Machinery, New York, NY, USA,
334–342.

[51] Yun Zhou and W. Bruce Croft. 2007. Query Performance Prediction in Web
Search Environments. In Proc. of the 30th ACM SIGIR’07. 543–550.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

209

https://lucene.apache.org/
https://huggingface.co/transformers/
https://keras.io/
https://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
https://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

	Abstract
	1 Introduction
	2 Deep-QPP Model Description
	2.1 Representation vs. Interaction
	2.2 Query-Document Interactions
	2.3 Layered Convolutions for QPP
	2.4 Reshaping the Interaction Tensor

	3 Deep-QPP Training
	3.1 Instances and Ground-truth Labels
	3.2 Pairwise Objective
	3.3 Pointwise Objective

	4 Experiments
	4.1 Datasets and Hyper-parameters
	4.2 Baselines
	4.3 Experiment Settings
	4.4 Results

	5 Related Work
	6 Conclusions and Future work
	References



