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Abstract. Role discovery is the task of dividing the set of nodes on
a graph into classes of structurally similar roles. Modern strategies for
role discovery typically rely on graph embedding techniques, which are
capable of recognising complex local structures. However, when working
with large, real-world networks, it is difficult to interpret or validate a set
of roles identified according to these methods. In this work, motivated
by advancements in the field of explainable artificial intelligence (XAI),
we propose a new framework for interpreting role assignments on large
graphs using small subgraph structures known as graphlets. We demon-
strate our methods on a large, multidisciplinary citation network, where
we successfully identify a number of important citation patterns which
reflect interdisciplinary research.

Keywords: role discovery, node embedding, citation network, explain-
able artificial intelligence

1 Introduction

In light of the perceived importance of interdisciplinary research, many stud-
ies have been conducted that quantify article interdisciplinarity in an effort to
identify relevant research trends and to explore their impact. The most widely-
accepted methods for measuring interdisciplinarity assess knowledge integration
or knowledge diffusion using citation information, thus measuring interdisci-
plinarity as some function of the balance, diversity, and dissimilarity of the
disciplines identified in an article’s cited papers [17, 19] or citing papers [16,
28]. To implement these metrics, each paper in a research corpus must be as-
signed to an explicit research topic or subject category, for which sources are
numerous, inconsistent, and sometimes unavailable. Subject categories are most
commonly assigned to papers according to the journals in which they are pub-
lished. However, these assignments rarely agree with underlying citation com-
munity structure [17]. There is evidence that interdisciplinary research can be
identified in a corpus according solely to the citation structure. Specifically, it
has been shown that frameworks that encode the structural role of articles in
a citation graph can predict interdisciplinary interactions more accurately than
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those that encode only the proximity between papers [6]. In light of this, we
explore the potential for modern graph learning methods to identify the citation
structures associated with interdisciplinary research.

Numerous approaches have been proposed in the literature for the task of
structural role discovery on graphs, where nodes on a graph are divided into
classes of structurally equivalent nodes [21]. Early approaches in this area relied
on graph sub-structures known as graphlets or motifs [12]. In large graphs, where
we wish to identify higher-order structural features, counting large graphlets
is very expensive. The majority of recent approaches employ a representation
learning technique known as node embedding, which substitutes graphlets with
alternative structural features like degree distributions [20] and diffusion wavelet
patterns [8]. These methods are designed to learn higher-order structural rela-
tionships than those that can be discovered by small graphlets. However, in many
cases, these alternatives approaches come at the cost of interpretability. When
applied to graphs that are too large to be visualised reasonably, it is difficult to
understand the substantive meaning of a given set of structural roles.

While embedding methods for role analysis have previously been shown to
be capable of grouping nodes into known roles or structures (such as those in
synthetic graphs or transport networks [8, 20]), it remains unclear as to how these
roles should be interpreted or validated when applied to real-world graphs with
unknown roles. Moreover, different role discovery methods learn different sets of
structural roles, depending on the application many or none of these clusterings
may be valid. As such, it is critical that we can compare the roles discovered by
different methods.

The core contribution of this work is a new framework for explaining a set of
discovered roles using graphlet orbits, as described in detail in Section 3. Later
in Section 4 we apply this framework to a large, multidisciplinary citation net-
work to extract and interpret sets of structural roles. In the case of each paper,
we compute Rao-Stirling diversity scores to indicate an articles interdisciplinar-
ity. Crucially, in addition to interpreting a set of candidate roles, we explore
the distributions of IDR scores assigned to papers in different clustering to as-
sess if any of the candidate clusterings have grouped papers according to their
interdisciplinarity.

2 Related Work

2.1 Measuring Interdisciplinarity

Interdisciplinary research is most commonly defined as research activity which
integrates expertise, data or methodologies from two or more distinct disciplines.
Accordingly, many studies assign an interdisciplinary research (IDR) score to a
research article, which is calculated as a function of the balance, diversity and
dissimilarity of the disciplines identified in the articles reference list [17, 19]. Al-
ternatively, some studies compute a similar score on the disciplines identified
in an article’s citing literature, instead measuring IDR according to an arti-
cles impact/influence across multiple disciplines [16, 28]. A popular function for
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measuring IDR is the Rao-Stirling Diversity index [27]

D =
∑

i,j(i 6=j)

pipjdij (1)

where IDR is measured as a pairwise summation over all pairs of disciplines
identified in a set of articles cited by (or citing) some focal paper. Here pi and pj
represent the proportion of references to disciplines i and j respectively, while
dij refers to some precomputed distance between the disciplines. This metric,
and its many variants, are reliant on explicit topic or discipline categories for
research papers, such as those provided by Web of Science, Scopus, or Microsoft
Academic. Such explicit categorisations for research papers, especially those as-
signed at a journal level, are problematic [1, 13]. Moreover, the inconsistencies
evident across many of these subject taxonomies [25] may confirm that no singu-
lar, correct categorisation exists. However, recent graph learning methods may
be capable of identifying the citation structures associated with interdisciplinary
research, without any knowledge of explicit discipline categorisation.

2.2 Local Structure and Role Embeddings

Research developed in social science studied local graph structures using small
graph patterns such as triads, cycles and stars [15]. More recent research in
computational science further developed these methods and proposed the term
‘motif’ – a subgraph pattern (or graphlet) which is significantly over-represented
in a graph [12]. Motif and graphlet counts represent powerful features for ex-
pressing graph structure, and have been employed in graph learning tasks such
as node classification and anomaly detection [7]. When using graphlet counts to
describe nodes, it is more information to consider the position in the graphlet
at which the node occurs. Equivalent positions within graphlets are called auto-
morphism orbits or simply orbits. Figure 1 illustrates a subset of graphlets with
2, 3, 4 and 5 nodes, and includes each of the distinct orbits on these graphlets,
as they were enumerated by [18].

Fig. 1: Examples of graphlets with 2, 3, 4, and 5 nodes. Graphlets and orbits are
enumerated according to [18]
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Role discovery is the task of grouping nodes which share similar structural
patterns in a graph into distinct classes [21]. Many modern approaches to role
discovery rely on graph embedding, where nodes are transformed into low-
dimensional vector representations [3, 10, 20, 8]. Specifically, graph embedding
methods for the purpose of role discovery (often called “role embedding”) learn
dense vector representations for nodes such that nodes that are structurally
similar will be embedded nearby in the embedding space (i.e., will have similar
representations). A clustering of the role embedding space thus represents a set
of discovered roles. However, if this network cannot be visualised, it is difficult
to interpret the roles. Moreover, with numerous approaches to role embedding
(e.g. [3, 8, 10, 20]), and many possible clusterings of each embedding space, we
require some approach to explain a set of discovered roles so that they can be
compared and validated.

2.3 Explanation via Surrogate Models

In recent years, much research has been conducted in the field of explainable
artificial intelligence (XAI) towards a goal of understanding and explaining so-
called ‘black box ’ models [2]. One popular approach is to use a global surrogate
model: “an interpretable model that is trained to approximate the predictions
of a black box model” [14]. As such, the decisions made by a previously unin-
terpretable system can be explained through interpretations coming from the
surrogate model.

Some classification models (such a logistic regression models or decision tree-
based classifiers) are interpretable by definition, as any input feature’s effect on
the models classification can be measured (for example, using regression coeffi-
cients). However, many model-agnostic methods of interpretation have also been
developed. Generally, these methods propose different means of perturbing the
input data, and exploring its effect on the models output. For example, Partial
Dependence Plots (PDPs) [9] offer a graphical representation of a models pre-
diction as a function of its arguments or inputs. Broadly speaking, a PDP shows
how a feature influences the prediction of a model, on average, for every value
that it can take. The Accumulated Local Effects plot (ALE) [4] provides a sim-
ilar illustration of a features effect, except it accounts for possible correlations
between features, and as a result is more robust than the PDP in some applica-
tions. In 2021, global surrogate models were employed to provide feature-based
explanations for communities detected on graphs [24]. Specifically, this work as-
sessed the importance of different graph features using permutation importance
[5], where the values for a feature are permuted throughout the dataset and the
effect on model performance is measured to indicate its importance.

3 Methods

In this section we outline a general framework for uncovering and evaluating
structural roles on a graph. The complete process is illustrated in Figure 2.
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Fig. 2: Overview of the workflow for the proposed framework.

We begin with a graph G = (V,E), from which we wish to identify a set of
discrete structural roles. We employ a role embedding algorithm to map each
node v ∈ V to an embedding space Xemb = R128, thus a clustering of Xemb is
considered a set of discovered roles yrole. Additionally, we represent the same
nodes in the graphlet space Xgraphlet = Z73 derived from G, where each node v
is represented by a bag-of-orbits vector xv = {xv

0, x
v
1, ..., x

v
72}, with xv

i denoting
the number of times node v is involved in induced graphlet orbit i. We use a
vocabulary of 73 orbits, which we count on graphlets of size 2 to 5 using the
ORCA method [11]. We refer to graphlets and orbits according to the enumer-
ation by [18]. The graphlet space is first used to validate any set of roles we
identify in the graph. By clustering the embedding space, we group nodes into k
discrete roles, which we can evaluate using cluster validity metrics calculated on
the graphlet space. Employing various role embedding algorithms and clustering
methods, we identify a set of candidate clusterings (or roles) according to the
separation they achieve in the graphlet space.

Graphlet-orbit counts are a powerful language for describing the structural
features of nodes on a graph [7, 18]. As such, a clustering (according to node
embeddings) which is valid in the graphlet-orbit space should offer a reasonable
set of structural roles. Additionally, we employ graphlet orbits to interpret a
set of discovered roles. For a candidate clustering yrole, we fit a surrogate model
f : Xgraphlet 7→ yrole. By modelling the role assignment in the graphlet space, we
can explore the feature importance and effect of the different graphlet orbits in
role assignments, according to many model-agnostic explanation techniques from
the field of XAI [14]. In Section 4, we demonstrate graphlet-based explanation
using permutation importance [5] and accumulated local effects plots [4]. As
we will show, highlighting important or discriminatory orbits can offer a visual
means of understanding the structure of a role in the graph.
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4 Application

In this section we apply the methods described in Section 3 to extract and
interpret sets of structural roles in a citation network. In the case of each paper,
we compute Rao-Stirling diversity scores to indicate an articles interdisciplinarity
and thus explore the distributions of IDR scores assigned to papers in different
roles. We identify a set of roles which has grouped papers according to their
interdisciplinarity. Finally, we use graphlets to interpret the structure of these
more interdisciplinary roles, and highlight certain citation structures which are
specific to interdisciplinary research.

4.1 Data

In order to discover the citation structures of interdisciplinary research, we re-
quire a large, dense citation network that contains research from a diverse set
of disciplines. In addition, we require that each paper can be assigned to a sub-
ject category or discipline, according to an established taxonomy. We construct
a novel citation network using Microsoft Academic Graph [26] citation data
from a seed set of journal papers. This sets consist of samples of articles from
Scopus indexed journals, stratified according to their All Science Journal Cate-
gories (ASJC). The graph contains samples of 1,500 articles published between
2017 and 2018 in Scopus indexed journals with the ASJCs ‘Computer Science’,
‘Mathematics’, ‘Medicine’, ‘Chemistry’, ‘Social Sciences’, ‘Neuroscience’, ‘En-
gineering’, and ‘Biochemistry, Genetics and Molecular Biology’. We maximise
the completeness of the graph by including all available referenced articles that
are published in Scopus indexed journals. In this manner, we produce a dense,
multidisciplinary citation network, such that each article can be categorised ac-
cording to the ASJC of the journal in which it was published. Later, these
discipline categories can be used to compute article interdisciplinarity according
to Rao-Stirling diversity of disciplines identified in both an articles citing and
cited papers. In total, the citation graph contains 41,895 papers (nodes) and
129,159 citations (undirected edges).

4.2 Role Discovery

For each article in the citation graph, we learn role embeddings according to 4
approaches: (i) Role2Vec [3], (ii) Struc2Vec [20], (iii) RolX [10], (iv) GraphWave
[8], and we cluster each embedding space using k-means clustering for values
of k between 2 and 19. Articles clustered according to their role embeddings
represent a set of structural roles.

4.3 Role Interpretation

Validation. Figure 3 shows the cluster validity of the roles discovered according
to the 4 role embedding methods. Each set of roles represents a k-means clus-
tering of the embedding space, which is then transformed to the graphlet space,
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where we measure the validity of the clustering using silhouette score [23]. We
plot the silhouette score for each embedding for values of k in the range [2, 19].
Silhouette scores can take a value in the range [-1,1]. A high score represents
dense, separate clusters, a score of 0 indicates an overlapping clustering, while
a negative score indicates an incorrect clustering. According to these scores,
we choose 3 candidate roles to demonstrate interpretation and explanation: (i)
Struc2Vec (k = 6) which is an outlier in the Struc2vec roles and achieves an
overlapping clustering, (ii) RolX (k = 3) which has the highest silhouette score
for all approaches with more than 2 clusters, and (iii) GraphWave (k = 3) which
achieves a positive score.

Fig. 3: Silhouette score for k-means clusterings of the different embedding spaces.
Silhouettes are calculated according the clusterings if we describe each node by
their bag-of-orbits vector, rather than their embedding.

Surrogate models. We fit a random forest classifier to model role assignments
according to the bag-of-orbits vectors for each node. That is, we learn a function
f : Xgraphlet 7→ yrole for each of the candidate roles yrole. We choose a random
forest classifier as we anticipate that structural roles may be non-linear in the
graphlet space and may rely on combinations and interactions of features to
model higher-order structures. As the orbit counts follow a power-law distribu-
tion, we log-transform all features in the graphlet space. Table 1 reports the 5
most informative features for each model according to permutation importance.
In the case of the Struc2Vec (k = 6) roles, the overlap between clusters in the
graphlet space is evident. The only informative features (with non-zero permu-
tation importance) are small, local orbits – the approach is blind to deeper, more
complex structures. The RolX (k = 3) approach, which best separates the nodes
in the graphlet space, has grouped nodes according to larger, simple structures.
The most informative orbits: 15, 4, and 1, each refer to chains of varying length.
Finally, GraphWave (k = 3) appears to have grouped the nodes according to
more complex, higher-order structures. Many of the features important to role
classification in the GraphWave case (27, 24, and 18) contain combinations of
chains, stars and cliques. Depending on the domain or application in which we
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employ role discovery, any one of these sets of roles may be the most valid or
useful. However, without modelling the role assignments in the graphlet space,
we are unable to understand which structures are being grouped in the discov-
ered roles. We will use the GraphWave roles to demonstrate further explanation
and explore the structure of interdisciplinary papers.

Struc2Vec (k = 6) RolX (k = 3) GraphWave (k = 3)

1 0 (0.111 ±0.0005) 15 (0.113 ±0.0016) 27 (0.022 ±0.0006)
2 2 (0.010 ±0.0001) 4 (0.007 ±0.0002) 15 (0.014 ±0.0002)
3 3 (0.006 ±0.0001) 1 (0.006 ±0.0003) 17 (0.013 ±0.0006)
4 5 (0.002 ±0.0001) 27 (0.005 ±0.0002) 24 (0.013 ±0.0004)
5 16 (0.000 ±0.0000) 19 (0.004 ±0.0003) 18 (0.013 ±0.0004)

Table 1: Top 5 most important features for each surrogate model. Orbits are
ranked by permutation importance, which is included in parentheses.

Roles and their structure. The GraphWave method clusters 35,136 papers
into role 0, 16,453 papers into role 1, and 306 papers into role 2. Figure 4 contains
Accumulated Local Effects (ALE) [4] plots for 3 features/orbits and their effect
on classification to each of the 3 GraphWave roles. We illustrate the ALE of orbits
27 (the end of a chain adjacent to a clique) and 17 (the middle of a long chain)
as two of the most important structures (according to permutation importance).
We also include the ALE of orbit 0 (node degree) as a valuable reference; it is
useful to confirm that the roles are indeed separating nodes according to more
complex features and not simply the number of edges. The ALE plot for orbit
27 shows that for low-to-mid values of that orbit count, a node will be classified
as role 0. However, if a node’s count for orbit 27 exceeds a threshold, it will be
classified as role 1. We suppose 2 scenarios when a focal node’s count for orbit
27 (a chain adjacent to a clique) will become large: (i) the node is adjacent to
a large community – each triangle in which the node at position 30 participates
will increase the count, (ii) the node exists at the center of a barbell graphlet, i.e.
on a longer chain between two or more communities communities. We illustrate
these scenarios in Figure 5. There should exist some threshold value of 27 beyond
which a node must exist on the chain between two communities. For example, if
a focal node has a count for orbit 27 that is greater than the count of triangles
(orbit 3) for the node at position 30, then the focal node must be adjacent to
a second community (scenario (iii)). This threshold will be represented by the
greatest value of orbit 3 in the graph. We include this value for reference in
Figure 4. Beyond this threshold, a node is more likely to be classified in role
1. Accordingly, we conclude that a node/paper that is on the end of a chain
adjacent to a community will be assigned to role 0, while a node that exists on
a bridge between two communities will be assigned to role 1.

In order to identify the structures specific to the smallest role (role 3), we
can fit another surrogate model on only the nodes in cluster 1 and 2. ALE plots
for this model are included in Figure 6. In this case we find that orbit 27 does
not meaningfully distinguish between the two roles. Instead, orbit 18 (the end
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Fig. 4: Accumulated Local Effect [4] plots for a surrogate model which classifies
nodes to GraphWave roles according to graphlet orbit counts. The figure shows
the effect of 3 features on role classification: orbits 27 and 17; the most important
features as measured by permutation importance, and orbit 0 (node degree);
which we include for reference. In the case of orbit 27, we highlight the maximum
value of orbit 3 that was observed in the graph.

Fig. 5: Higher order structures containing orbit 27. Here (i) and (ii) represent
likely structures for nodes with high counts for orbit 27. When the count for
orbit 27 exceeds a threshold, we infer structure (iii).

of a chain adjacent to a star) is the most informative feature, and, for very
high values of this orbit count, nodes will be assigned to role 2. Such nodes
likely represent the centre of a bridge between large communities that are less
densely connected (i.e., containing many open triads). We conclude this to be
an important structure for role 3.

4.4 Interdisciplinary Roles

Figure 7 plots the IDR scores for the papers in each of the GraphWave roles.
IDR is calculated according to the Rao-Stirling diversity of the ASJC categories
identified in an article’s citing papers. As Rao-Stirling IDR scores may be biased
according to the number of articles in the summation, we bin nodes by degree,
and plot IDR distributions for each role, within each bin. Specifically, we log-
transform the node degrees and group nodes into 10 bins of equal width, within
which we plot IDR distributions for each role if the bin contains more than 50
papers from each role. According to these plots, we note that the structural
roles identified by GraphWave have grouped papers into clusters with different
IDR distributions. Even when we account for node degree (a potential bias of
the Rao-Stirling IDR score), papers assigned to structural roles 1 and 2 have
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Fig. 6: Accumulated Local Effect [4] plots for a surrogate model which classifies
nodes to GraphWave roles 1 or 2 according to graphlet orbit counts. The figure
plots the effect of 3 features: orbits 0; node degree and 27; previously the most
important feature for the global model, and orbit 18; the most important feature
in the surrogate model.

Fig. 7: Interdisciplinarity scores (IDR) computed for papers in each of the 3
GraphWave clusters. IDR is computed as the Rao-Stirling [27] diversity of the
research disciplines identified in an articles citing papers. We bin papers/nodes
according to the log of their degree, and compare distributions within each bin.

consistently greater IDR distributions than those assigned to role 0. We recall
some of the important structures that were identified for roles 1 and 2: (1) a
bridge between densely connected communities, and (2) a bridge between large,
sparsely connected communities. We conclude these to be citation important
structures associated with interdisciplinary research.

5 Discussion and Conclusions

Many modern methods for role discovery in graphs rely on node embeddings
[22]. We have applied a number of these methods to learn structural roles on
a research citation network. While these methods have previously been shown
to be capable of grouping nodes into known roles (e.g., in synthetic graphs or
transport networks [20, 8]), it remains unclear how roles could be understood or
validated when applied to graphs with unknown roles. In this work we outlined
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a framework for interpreting a set of discovered roles using graphlets and orbits.
We leveraged methods from the field of explainable AI to explore the subgraph
structures that are specific to discovered roles. We demonstrated our approach
on a citation network, where we identified important structures specific to in-
terdisciplinary research. It is evident in our analysis that different role discovery
methods learn different sets of structural roles. In different applications many
or all of these clusterings may be valid, but it is critical that we can compare
the roles discovered by different methods. While our framework is general, and
applicable to explanation and validation in all role discovery tasks, we highlight
the utility of structural role embeddings in mapping interdisciplinary research.

For the task of identifying and mapping IDR interactions, structural paper
embeddings could be augmented by considering additional, non-structural infor-
mation, such as article or abstract text. This could provide a richer paper repre-
sentation, without imposing a predefined or static disciplinary classification on
the graph. There is also scope for improving upon our proposed framework. Many
model-agnostic approaches have been developed for explaining surrogate models
[14], which could be applied to interpret the role assignments in the graphlet
space. For example, second-order effects of pairs of features can be calculated
in a similar manner to the ALE analysis we have included [4]. Combinations
of graphlets could be highly effective in modelling higher-order, more complex
graph structures. One possible limitation of our current framework is the num-
ber of correlated features in the graphlet space. In future applications it may
be possible to reduce the set of graphlet orbits to a minimal set of uncorrelated
features via traditional feature selection techniques.

Acknowledgments. This research was supported by Science Foundation Ire-
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