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Abstract. Building a scalable, fault-tolerant stream mining system that
deals with realistic data volumes presents unique challenges. Consider-
able work is being done to make the development of such systems simpler,
creating high level abstractions on top of existing systems. Many of the
technical barriers can be eliminated by adopting a state-of-the-art inter-
face, such as the Trident API for Storm. We describe a stream mining
tool, based on Trident, for monitoring breaking news events on Twitter,
which can be extended quickly and scaled easily.
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1 Introduction

Recently there has been a significant shift online towards the task of content
curation for online journalism. Media agencies such as Storyful1 can now break
or cover stories as they evolve by leveraging the content produced on social
media platforms such as Twitter. However, given the massive volume of content
produced by users of these platforms on a daily basis, the task of extracting
content that is relevant to individual real-world news events presents a number
of challenges. In particular, mining streams of this scale in real-time requires the
adoption of new data processing frameworks and data mining algorithms.

In this paper, we present a new system for real-time monitoring streams of
tweets to cluster relevant tweets around news events. In Section 3, we describe
an initial application of this system in the context of breaking news on Twitter,
and evaluate the usefulness of gathered tweets by allowing a journalist from
Storyful to rate the relevancy of the resulting clusters with respect to six major
news events from 2013. Based on this evaluation, we highlight specific issues that
make the Twitter event monitoring task particularly difficult. We conclude in
Section 4 with suggestions for future work to overcome these issues.

2 System Description

Our proposed stream monitoring system is built upon Storm[6], an open source
framework for real-time distributed computation and data processing2. From an

1 http://www.storyful.com
2 http://storm-project.net



architectural perspective, the topology of a Storm system is formed from directed
acyclic graphs containing two fundamental node types: “spouts” and “bolts”.
Spouts produce tuples of data as their output, while bolts perform operations
on tuples they receive as inputs.

“Trident” is a high-level abstraction framework for computation on Storm.
As with the core Storm API, Trident uses spouts as the source of data streams.
These streams are processed as batches of tuples partitioned among workers
in a cluster. Trident provides means for transforming and persistently storing
streams. The framework handles batching, transactions, acknowledgements, and
failures internally. Tuple processing follows an “exactly once” semantic, making
it easy to reason about processes, apply functions, filters and create aggrega-
tions from streams of tuples. Developing a fault tolerant, scalable stream mining
system can be time consuming, but most implementation and deployment chal-
lenges can be avoided by using the Trident API and supporting software.

To cluster tweets, we have implemented two variations of a single pass al-
gorithm suitable for streaming data. The first is the standard sequential leader
clustering algorithm [3], a simple incremental approach that divides a dataset
into k non-overlapping groups such that, for each group there is a “leader” data
point and all other data points have similarity ≤ τ to the leader. The second
algorithm is a variation of this approach, which is described in Algorithm 1 and
which we refer to as moving leader clustering. The moving leader approach at-
tempts to capture new developments in a news story over time. Both algorithms
use cosine similarity between tweets in the context of our proposed system.

Data: Stream of tweets; User assigned initial tweet leaders
Result: Sets of tweets attached to leaders
while A tweet Leader exists do

Compare new tweet similarity to leaders;
if Sim > NewLeaderThreshold then Assign tweet as new Leader;
else if Sim > InclusionThreshold then Include tweet in Set;
else Discard Tweet;

end
Algorithm 1: Moving Leader Clustering algorithm.

3 Evaluation

The public stream of tweets is generally useful for global trend detection and
tracking, but is not so useful for tracking developing news stories, as it generally
contains too many irrelevant messages for this task. As a solution, a set of about
20,000 “newsworthy” accounts has been curated and maintained by Storyful,
which provides a useful filter. In our evaluation, we monitor a stream of tweets
produced by this set of accounts. Filtering of this type vastly reduces the volume
of spam tweets, and can help balance under represented groups of users.

Tweets have several characteristics that create challenges for traditional text
analysis. Messages are very short (impacting term frequency), often contain mis-
spellings or abbreviations, words are sometimes concatenated - especially in hash
tags, punctuation is sparse (making tokenisation a challenge). Twitter specific



Event Tweets Streamed Clustered Leader Changes

North Korean nuclear test 21,436,958 56,845 8,833
Chelyabinsk meteor 21,782,200 66,287 3,506
Pope Benedict to resign 17,260,343 19,036 2,654
Death of Hugo Chavez 11,276,989 45,197 3,356
Cyprus EU bailout 6,879,389 13,329 85
Canada exits UN convention 4,942,253 1,832 17

Table 1. Data for set of six news events from February and March 2013.

terms (@mentions, “RT”, “via”) and emoticons using unicode characters can
also cause problems with automatic language detection. Prior to clustering, each
tweet is stripped of these entities and English stop-words, and a corresponding
term frequency vector is created. Tweets are also assigned a density score, which
attempts to quantify the quality of a tweet, and promote longer, more informative
tweets. Tweet density is the sum of term frequencies of non stopwords, divided
by the number of stopwords they are apart, squared [1]. Tweets with a density
score less than the query tweet were discarded. The density filter effectively re-
moved short tweets that would otherwise be assigned very high similarity scores.
For each event, 24 hours of tweets posted after the query tweet were streamed.

3.1 Results

To evaluate the two clustering algorithms described in Section 2, we examined
their ability to find future relevant tweets for the six news events listed in Table 1,
based on the provision of a single query “seed tweet”. For each story, the first
30 tweets posted after the seed tweet and ranked by the system, were presented
to a journalist. These tweets would typically represent the first few minutes of
a breaking story, when need for information is greatest. A Storyful journalist
manually provided relevancy judgements on a scale of 1 for a timely and useful
tweet, 0 for a relevant tweet, and -1 for an irrelevant tweet. Quality of the
results is based on the popular normalised discounted cumulative gain measure
[4], as this measure reflects information usefulness for a journalist, discounting
irrelevant and low ranking results. A summary of the scores achieved by both
clustering techniques is shown in Fig. 1.

The moving leader approach was more suited to evolving stories, such as the
bank bailout in Cyprus. However, constantly changing the leader in the cluster
can impact results negatively, especially as users post more personal reactions
after unexpected events, such as the resignation of the pope. The “Canada exits
UN convention” story was interesting as it received very little attention overall.
The scores for this story were low, however - the moving leader variant was able
to retrieve the small number of relevant tweets.

The sequential leader was found to be more conservative, and better suited
for gathering similar content for stories that do not develop beyond an initial
announcement. There is also less chance of the cluster drifting off-topic, due to
leader changes. Overall, the sequential leader clustering approach tended to cap-
ture many relevant, but near duplicate tweets, as was the case with the Meteor
story - there were no tweets in this cluster that were useful for a journalist.
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Fig. 1. nDCG at k tweets for both clustering methods, for six different news events.

4 Future Work

Specifics of tweets mean that term frequency-based similarity measures will of-
ten capture redundant information, and fail to explore related topics associated
with a query. While the moving leader approach captured slightly more relevant
tweets, performance on different types of events varied. We plan to investigate
alternative ways of expanding tweet clusters around stories, and how topics as-
sociated with a news story change over much longer periods of time [2]. Other
aspects of the data that are not fully explored involve the social connections
between users. News stories tend to form unique collections of users that ac-
tively follow a story [5]. Following other interactions from these users could be a
means to expand original queries, or to discover novel insights into an event. The
next key component of our event monitoring system is an approach to summarise
news events, based on the selection of a subset of key tweets from a given cluster,
which serves to describe the evolution of an event as it unfolded on Twitter.
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