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Abstract In many real applications of semi-supervised learning, the guidance pro-
vided by a human oracle may be “noisy” or inaccurate. Human annotators will often
be imperfect, in the sense that they can make subjective decisions, they might only
have partial knowledge of the task at hand, or they may simply complete a labelling
task incorrectly due to the burden of annotation. Similarly, in the context of semi-
supervised community finding in complex networks, the information provided as
pairwise constraints may be unreliable or conflicting due to the human element in
the annotation process. This study aims to address the problem of handling noisy
pairwise constraints in overlapping semi-supervised community detection, by fram-
ing the task as an outlier detection problem. We propose a general architecture which
includes a process to “clean” or filter noisy constraints. Furthermore, we introduce
multiple designs for the cleaning process which use different type of outlier detec-
tion models, including autoencoders. A comprehensive evaluation is conducted for
each proposed methodology, which demonstrates the potential of the proposed ar-
chitecture for reducing the impact of noisy supervision in the context of overlapping
community detection.
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1 Introduction

Complex networks occur in many aspects of life, from social systems to biolog-
ical processes. Despite their diversity, it has been found that most networks have
common properties and principles of organization [10]. One essential property that
helps us to understand complex networks is the idea of community structure. Find-
ing these sets of nodes or communities provide us with three important capabilities:
understanding the structures and functionalities, modeling the dynamic processes in
networks, and predicting their future behaviors. Generally, algorithms for detecting
communities are unsupervised in nature. That is, that they rely solely on the net-
work topology during the detection process, rather than using any prior information
or training data regarding the “correct” community structure. One common issue is
that these algorithms can fail to uncover groupings that accurately reflect the ground
truth in a specific domain, particularly when these communities highly overlap with
one another [2].

Recent work has improved the effectiveness of such algorithms by employing
ideas from semi-supervised learning [4]. This involves harnessing existing back-
ground knowledge (e.g. from domain experts or crowdsourcing platforms), which
can be leveraged to provide limited supervision for the process of community de-
tection. Often this information takes the form of pairwise constraints between nodes
[6]. Typically, pairwise constraints are either must-link and cannot-link pairs, indi-
cating that either two nodes should be assigned to the same community or should
be in different communities. As an example, we might be interested in finding so-
cial groups based on common interests on social media platforms, such as Facebook
or Twitter, in order to target the most influential member of each social group for
marketing and recommendation purposes. To improve our ability to achieve this,
and go beyond simply looking at connections, we could use a human annotator, to
query whether two users should be in the same group or different groups and label
them as must-link or cannot-link, then incorporate these labels as constraints into
community detection algorithms. By using this kind of knowledge, we can poten-
tially uncover communities of nodes which are otherwise difficult to identify when
analyzing complex networks.

Despite the promise of semi-supervised learning, in many real applications the
supervision coming from human annotators may be unreliable or “noisy”. For in-
stance, this might occur when using annotation acquired by crowdsourcing plat-
forms [26] such as Amazon Mechanical Turk [29]. In general human oracles will
often be “imperfect”, in the sense that they can make subjective decisions, they may
disagree with one another, they might only have limited knowledge of a domain, or
they may simply complete a labeling task incorrectly due to the burden of annota-
tion [5, 18, 49]. Thus, when such judgements are encoded as pairwise constraints
for semi-supervised community detection can be unreliable or conflicting, which
can create problems when used to guide community finding algorithms [58].

In this study, we explore the effect of noisy, incorrectly-labeled constraints upon
the performance of semi-supervised community finding algorithms for overlapping
networks. To mitigate such cases, we treat the noisy constraints as outliers, and use
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an outlier detection strategy to identify and remove them, which has the effect of
“cleaning” the constraints coming from the human oracle. The primary contribu-
tions of the paper are as follows:

1. We introduce a general architecture for semi-supervised community finding
which incorporates a cleaning methodology to reduce the presence of noisy pair-
wise constraints, using outlier detection. This architecture can be implemented
with any semi-supervised community finding that might involve querying an im-
perfect oracle. In this study, we focus the use of the AC-SLPA algorithm [3].

2. We propose alternative designs for cleaning methodology, based on different out-
lier detection models. Each design involves executing two parallel processes to
separately reduce noise from must-link constraints and cannot-link constraints.

3. We investigate the performance of combining conventional outlier detection
models and deep learning models for identifying noisy constraints.

4. We conduct comprehensive experiments to evaluate these alternative cleaning
methods, as individual components, and when integrated within the proposed
general architecture on a range of synthetic and real-world networks containing
overlapping community structure.

The remainder of this paper is structured as follows. Section 2 provides a sum-
mary of relevant work in semi-supervised learning, in the context of both cluster
analysis and community finding. In Section 3, we describe the proposed general ar-
chitecture for community detection which incorporates a cleaning process to reduce
noise levels in pairwise constraints, and we propose multiple designs for implement-
ing the cleaning process. In Section 4, we discuss four experimental evaluations of
these methods. Finally, we conclude our work in Section 5 and provide suggestions
for further extending it in new directions.

2 Related Work

To provide context for our work, this section describes related research of semi-
supervised techniques in community finding, along with studies that address noisy
pairwise constraints in both clustering and community finding.

2.1 Semi-Supervised Learning in Community Finding

Several types of prior knowledge have been used in semi-supervised strategies to
guide the community detection process. The most widely-used approach has been to
employ pairwise constraints, either must-link or cannot-link, which indicate that ei-
ther two nodes must be in the same community or must be in different communities.
This strategy has been implemented via several algorithms, including modularity-
based methods [36], spectral partitioning methods [24, 57], a spin-glass model [19],
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matrix factorization methods [50, 57], and various other methods [55, 56]. Such ap-
proaches have often provided significantly better results on benchmark data, when
compared to standard unsupervised algorithms.

Other authors have used different kinds of prior knowledge to provide supervi-
sion for community detection. For instance, Ciglan et al. [12] developed an algo-
rithm for finding communities with size constraints, where the upper limit size of
communities is given as a user-specified input. This algorithm is based on standard
label propagation methods for finding disjoint communities. In [53] an optimization
algorithm based on density constraints was proposed. This algorithm constructs an
initial skeleton of the community structure by maximizing a criterion function that
incorporates constraints to only find communities with intra-cluster densities above
a given threshold. The remaining nodes are subsequently classified with respect to
this skeleton. Other algorithms have used node labels as prior knowledge to improve
the performance of community detection, using an approach which resembles tradi-
tional training data in classification [34, 39, 52]. Liu et al. [38] developed a method
that uses a semi-supervised label propagation algorithm based on node labels and
negative information, where a node is deemed not to belong to a specific community.

The majority of algorithms in this area have been designed to only find non-
overlapping communities, where each node can only belong to a single commu-
nity. However, many real-world networks naturally contain overlapping community
structure [1]. To the best of our knowledge, little work has been done in the con-
text of finding overlapping communities from a semi-supervised perspective. Dreier
et al. [17] performed some initial work here, using supervision for the purpose of
algorithm initialization. Specifically, a small set of seed nodes was selected, whose
affinities to a community was provided as prior knowledge in order to infer the rest
of the nodes’ affinities in the network. On the other hand, [48] used an expansion
method that classifies edges into communities, where this model is trained on set of
predefined seeds. However, there is no external human supervision used during the
seed selection or expansion processes. In contrast, for our study, we focus on the
problem of semi-supervised community detection based on the external supervision
by human who are part of the networks or domain experts, and encode it as pair-
wise constraints since they have proven to be effective in a range of other learning
contexts [8, 22].

2.2 Noisy Constraints in Clustering and Community Finding

Various algorithms have been proposed for the general task of pairwise constrained
clustering, based on a variety of different clustering paradigms (e.g. [9, 15, 37].
However, most assume the existence of “perfect” pairwise constraints which will
be clean and will not contradict one another. Fewer studies have considered the
requirement to handle noisy pairwise constraints. However, some relevant work in
clustering has involved the development of new algorithms which are robust to noisy
or conflicting pairwise constraints [7, 13, 41, 45]. Other studies have introduced new
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metrics to assess the quality of constraints, considering aspects such as their infor-
mativeness and coherence [16, 51]. These can be used to filter or clean the pairwise
constraints prior to clustering. A related study [58] proposed an approach for han-
dling noise by using a random forest classifier to identify incoherent constraints.

In contrast, in the field of semi-supervised community finding, the issue of noisy
pairwise constraints has rarely been studied, and algorithms generally assume the
veracity of any supervision supplied by an oracle. One related study from [36] ini-
tiated the work of handling “conflicting” pairwise constraints in non-overlapping
community finding. That is, cases where (vi,v j) ∈ must-link, (vi,vk) ∈ must-link,
and (v j,vk) ∈ cannot-link. Such cases of conflict were identified using a dissimi-
larity index metric to measure the reliability of constraint pairs. However, this type
of constraint conflict is in fact legitimate in the context of overlapping communi-
ties, as shown in our previous work in [3]. Therefore, the challenge remains of han-
dling noisy constraints for overlapping community finding in an appropriate manner,
which we seek to address in the next section.

3 Methods

3.1 Overview

Before describing the proposed architecture, we present the formal definition of
pairwise constraint as in [4] which are used in this study. Given a set of nodes V of
a network, pairwise constraints include two forms of constraints:

1. A must-link constraint specifies that two nodes must be in the same community.
Let ML be the must-link constraint set: ∀ vi,v j ∈ V where i 6= j, (vi,v j) ∈ ML
indicates that two nodes vi and v j must be assigned to the same community.

2. A cannot-link constraint specifies that two nodes must be in different communi-
ties. Let CL be the cannot-link constraint set: ∀ vi,v j ∈ V where i 6= j, (vi,v j) ∈
CL indicates that vi and v j must be assigned to separate communities.

As discussed in [4], implementing pairwise constraints in the context of overlap-
ping communities is challenging due to the lack of transitive property for must-
link constraints in the context of overlapping communities. In the case of non-
overlapping communities, must-link constraints have a transitive property, where
a third must-link relationship can be inferred from two other associated must-link
constraint pairs. For instant, if (vi,v j) ∈ML, and (vi,vk) ∈ML, then we can also in-
fer that (v j,vk) ∈CL. This property does not hold in overlapping communities, node
vi might be an overlapping node and in this case there are two possible scenarios for
the pair (v j,vk): (1) (v j,vk) ∈ CL where node vi might be an overlapping node that
have a must-link constraint with both v j and vk, yet these two nodes could belong to
two different communities; (2) (v j,vk) ∈ML where all three nodes are in fact in the
same community. This problem have been addressed thoroughly by [4] and is not
the main focus of this paper.
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Now We describe our proposed general architecture for semi-supervised com-
munity detection which incorporates a methodology to reduce the presence of noisy
pairwise constraints using an outlier detection model, as illustrated in Fig. 1. This
architecture begins with a set of noisy pairwise constraints provided by a human or-
acle (PC−). The set of noisy pairwise constraints (PC−) is composed of must-link
(ML−) and cannot-link (CL−) constraints. These constraints are cleaned to produce
a revised set of constraints (PC+) (composed of must-link (ML+) and cannot-link
(CL+) constraints) which are fed into the community finding process. The proposed
architecture consists of three distinct phases:

1. Phase 1: Feature extraction. After receiving a set of pairwise constraints (PC−)
from a potentially-noisy oracle, features vectors are constructed to provide in-
puts to outlier detection models later, with one vector per constraint pair (for
both must-link and cannot-link). These vectors encode various aspects of the re-
lationship between a pair of nodes according to the underlying network topology.
These features include standard measures based directly on the network, includ-
ing: whether the pair of nodes share an edge, their number of common neigh-
bors, the shortest path length between them, and their cosine similarity. We also
include more complex features, such as their SimRank similarity [28], and their
similarity as computed on a node2vec embedding generated on the network [23].

2. Phase 2: Identifying noisy constraints. This involves executing two parallel
processes that use two different outlier detection models to separately eliminate
noise from the original must-link set (ML−) and cannot-link set (CL−). The
constructed feature vectors are fed into each model for multiple iterations of
cleaning, returning a score for each constraint that determines whether or not it
is an outlier (i.e. a noisy constraint).

3. Phase 3: Applying Semi-supervised Community Detection Process. The re-
turned clean pairwise constraint set (PC+ : ML+,CL+) is passed to a semi-
supervised community detection algorithm to be used during the process of find-
ing communities.

In the following sections, we describe the details of the proposed architecture in
terms of the outlier detection methods used to identify potentially-noisy constraints
(Section 3.2), the different variations of the second phase of the architecture shown
in Fig. 1 (see Section 3.3), and the implementation of the proposed architecture in
the context of the AC-SLPA community finding algorithm (see Section 3.4).

3.2 Outlier Detection Methods

Isolation Forests: This method, proposed by [40], uses a tree-based ensemble strat-
egy for anomaly detection. The assumption underlying this method is that anomalies
will be isolated earlier in their trees as these examples are not only rare, but also have
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Fig. 1: An illustration of the overall pairwise constraint cleaning process.

feature values substantially different from the normal data. Random partitions are
used in order to separate examples, with the number of partitions acting as the path
length. Because anomalous feature values are assumed to significantly differ from
that of normal examples, these features will more easily split anomalous examples
from normal examples early on in the tree, leading to a shorter path. This shortening
effect is compounded by the fact that these examples are also assumed to be rare. In
order to compute an anomaly score, the average path length over multiple trees is
computed, and normalized by the average path length over all paths. Scores close to
1 are said to be anomalous and scores close to 0 are assumed normal. This algorithm
fits the problem of noise detection when there are far fewer noisy labels than normal
examples.

One-class SVM: One class Support Vector Machine (OCSVM)[47, 46] is a commonly-
used method for anomaly detection which extends support vector algorithms to one-
class classification. The reference to “one class” here refers to the assumption that
primarily data from the normal class (i.e. non-outliers) will be modeled during train-
ing. First, data is transformed by a map φ to a higher dimensional space by evalu-
ating a kernel function. The algorithm then seeks to find the separating hyperplane
in the kernel space between data and the origin with the largest margin. This is
achieved by solving the following quadratic program for given training examples
xxx1,xxx2, ...,xxxl :

min
1
2
‖w‖2 +

1
ν l

l

∑
i

ξi− p (1)

subject to
(w ·φ(xxxi))> p−ξi,ξi > 0 (2)

where w and p solve the problem. Here, ξi refers to the slack variable for a given
example xxxi which softens the margin, allowing for some points to reside outside
the margin, essentially relaxing the assumption of complete separability between
normal and outlying data. The hyperparameter ν ∈ (0,1) controls the number of
outliers with smaller values allowing outliers to have a greater affect on the decision
function. The decision function is given by
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f (xxx) = sgn((w ·φ(xxx))− p) (3)

where sgn(z) outputs a value of +1 for z > 0, indicating normal data and −1 other-
wise, indicating an outlier.

Local Outlier Factor: This method is based on the concept of local density in
detecting outliers. Given a particular point p, we measure the density of p with
respect to the density of its k nearest neighbors. Intuitively, if the local density of p
is lower than the local densities of its neighbors, this indicates that p is an outlier.
As discussed in [11], for a given neighborhood size k, the k-distance(p) for a point
p is defined as the distance between p and its k-th neighbor o (i.e. the k-th closest
point to p). The k-distance neighborhood Nk(p) is the set of points whose distances
do not exceed the k-distance(p). The reachability distance is then defined as:

reachdistk(p,o) = max{k−distance(o),d(p,o)} (4)

This means that if p is o’s k-th nearest neighbor, this will be returned, otherwise, the
true distance between p and o will be returned. In order to calculate the densities of
different clusters of points, the “local reachability density” lrdk is calculated.

lrdk(p) = 1/
∑

k
oi

reachdistk(p,o)
|Nk(p)|

(5)

Finally, the local outlier factor (LOF) of point p is defined as:

LOFk(p) =
∑

k
oi
( lrdk(o)

lrdk(p) )

|Nk(p)|
(6)

Autoencoders: An Autoencoder (AE) represents a type of neural network architec-
ture that attempts to reconstruct a given input in an effort to learn an informative
latent feature representation. Formally, for an input vector x, an attempt is made to
find a mapping from x to a reconstruction of itself x′ . By doing this, a latent rep-
resentation of the data is created in the hidden layer(s) of the network. The general
form of a single hidden layer autoencoder as follows:

f (x) = σ(x,W e), g(z) = σ(z,W d), and x′ = g( f (x)) (7)

where f (x) is the encoder function for input x,g(z) is decoder function for encoding
z, σ is a non-linear function, W e and W d are weight matrices for the encoder and
decoder respectively and x′ is the reconstruction of the input vector[21].

These networks can use a “bottleneck” configuration where the hidden layer(s) of
the network compress the data [21]. The network is trained by minimizing the mean
squared error (MSE) between the reconstruction and input. as shown in formal (8):

MSE(x,x′) =
1
n

n

∑
i=1

(xi,x′i) (8)
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Additionally, autoencoders can be constrained to enforce sparsity in the network and
therefore no longer require a compressed network capacity. One type of constrained
autoencoder adds a sparsity penalty to hidden representations by constraining their
absolute value. This penalty term is weighted and added to the cost function. The
constrained cost is defined as.

MSE(x,x′) =
1
n

n

∑
i=1

(xi,x′i)+λ ∑
i
|hi| (9)

where λ is the sparsity penalty and h = f (x) [21].
Autoencoders can be used in a number of capacities. In this work, we propose a

number of techniques for noise detection from pairwise constraint sets which make
use of autoencoders in different ways. Firstly, we show that autoencoders can be
used as an effective outlier detection technique for noise detection in pairwise con-
straints. Secondly, we demonstrate that autoencoders can also be used as an embed-
ding method to support other outlier detection methods in the identification of noisy
constraints.

3.3 Process for Identifying Noisy Constraints

In this section, we describe a number of alternative cleaning processes for reducing
noise in pairwise constraints, before passing them to a semi-supervised community
detection algorithm. These cleaning processes employ some of the outlier detection
models described in Section 3.2. It is important to note that pairwise constraints are
of two distinct types: must-link and cannot-link. The differences in their respective
distributions, which can be seen in Fig. 2, motivates the use of two separate cleaning
processes and exploring different outlier detection models for each. The selection of
models is based on best performance in detecting noises in constraints as illustrated
in the evaluation section.

In this study, we explore the implementation of the following cleaning processes
which are classified into four categories based on the employed outlier detection
model:

1. Traditional outlier detection: In this process, a stand-alone outlier detection
method is selected (e.g. isolation forest, One-class SVM, local outlier factor) to
identify noise in must-link and cannot-link sets separately. The input features
are passed to these models, which then return a binary score for each constraint
which determines whether or not it is a noisy constraint. See Fig. 3 for an illus-
tration.

2. Outlier detection via deep embedding: Here the neural network autoencoder
(AE) is used as an additional component to provide an embedding function for a
traditional outlier detection method. In this case, only the encoder function from
the autoencoder model is used. After feeding the feature vectors into the encoder
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Fig. 2: An illustration of the differences between the distributions of must-link and cannot-link
constraints, as viewed in a low-dimensional space, for a sample of small networks. The plots in the
first row (a-1, b-1, c-1) show the must-link constraints of a sample set of small synthetic networks.
The second row (a-2, b-2, c-2) shows the cannot-link constraints of the same set of networks.

function, the model learns to effectively compress the input feature vector into
an informative latent feature representation in the hidden layer. Then this latent
representation is used as an input to an outlier detection method such as Isola-
tion forest, One-class SVM, or local outlier factor, which return a binary score
that identify the noisy constraints. See Fig. 4 for an illustration. This process is
conducted for must-link and cannot-link pairs separately with different encoder
functions and outlier detection methods. The selection of models is based on
experimental results as illustrated in the evaluation section.

3. Deep learning approach: In this case, the neural network autoencoder (AE) is
used as an outlier detection technique for identify noises in pairwise constraints.
Different autoencoder models is used for must-link and cannot-link pairs sep-
arately. The feature vectors are fed into the autoencoder model, which learns
to reconstruct the original constraints from the latent representation. The recon-
struction error is given by the difference between the original constraints and the
reconstruction. A large error is indicative of an outlier (i.e. a noisy constraint),
while a low error indicates a “normal” example (i.e. a correctly-labelled con-
straint). Finally, we sort the constraints in ascending order (lowest to highest er-
ror) in order to determine the top k constraints with the lowest level of error. The
expectation is that, as the larger part of pairwise constraints are non-noisy, the
autoencoder’s latent representation will be biased towards these examples. This
makes the model somewhat robust to outliers. Based on this property, it is then
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Fig. 3: An illustration of the process for identifying noisy pairwise constraints using traditional
outlier detection.

assumed that examples which are noisy will have a high reconstruction error. See
Fig. 5 for an illustration of the process.

4. Hybrid cleaning process: For each of the above described cleaning processes,
we use separate processes of the same category to identify noises in must-link
and cannot-link pairs. However, in this process, we investigate a combination of
different categories processes for must-link and cannot-link pairs. Based on ini-
tial experiments, a Neural Network based cleaning process performed better for
must-link pairs than cannot-link. On the other hand, using Outlier Detection with
Deep Embedding for cannot-link pairs is found to yield better noise detection
performance, when compared to using an autoencoder alone. See Fig. 6 for an
illustration of the process.

We see from Fig. 2 that the distributions of correct labels and noisy constraints
is more complex in the case of cannot-link constraints - i.e., there is a high over-
lap between both the correct and noisy groups. Separating these groups requires
a more complex function, as compared to the equivalent case for must-link con-
straints, which are relatively easy to separate.

3.4 AC-SLPA with Noise Identification

Now we discuss the implementation of the general architecture discussed in Section
3.1 in the context of the existing AC-SLPA algorithm [3] in order to create a ro-
bust active semi-supervised SLPA algorithm that can handle the presence of noisy
pairwise constraints. The new modified AC-SLPA consists of three stages. The first
two stages include the pairwise constraints cleaning process, which are executed
iteratively as follows:
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Fig. 4: An illustration of the process for identifying noisy pairwise constraints using outlier detec-
tion via deep embedding function.

Fig. 5: An illustration of the process for identifying noisy pairwise constraints using deep learning
approach (neural network autoencoder (AE)).

Stage 1: Detecting noises in constraints during selection and annotation. At
each iteration of AC-SLPA, informative pair of nodes are selected using Node Pair
Selection method [4] and passed to the noisy oracle to be labelled as pairwise con-
straints. After generating a set of noisy pairwise constraints (PC−), this set is passed
to the process of identifying noisy constraints for multiple sub-iterations of clean-
ing. As a new set of constraints is introduced at each iteration, the outlier detectors
are retrained at each one of these iterations and reapplied to the remaining set of
constraints. The output constraints of this process are then used to apply PC-SLPA
algorithm. At the end of each run of AC-SLPA, the cleaned pairwise constraint set
(PC+) is accumulated and mixed with the new chunk of noisy pairwise constraints
(PC−) in the next iteration. The larger the constraints set passed to the outlier de-
tection model, the better the performance.
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Fig. 6: An illustration of the process for identifying noisy pairwise constraints using hybrid clean-
ing process. A combination of traditional models, and deep learning based outlier detection models.

Stage 2. Rechecking discarded pairwise constraints. The previous stage of clean-
ing may result in a number of non-noisy constraints being labelled as noisy. This
is more likely to happen when the distribution of noisy constraints is highly over-
lapped with non-noisy constraints. The second stage is designed to recheck the dis-
carded pairwise constraints set (PC−) that were potentially mislabelled as noises,
by passing them to the process of identifying noisy constraints for another multi-
ple iterations of cleaning, thus reducing any wastage of the annotation budget. The
returned set of constraints from this process is added to the accumulated cleaned
pairwise constraints set (PC+) from stage 1.

Stage 3. Apply PC-SLPA. The final stage involves applying the semi-supervised
community detection process PC-SLPA using the final accumulated cleaned pair-
wise constraints (PC+) obtained from the previous two stages, thus producing a
final set of communities. The complete architecture is summarized in Algorithm 1.

4 Evaluation

In this section, we describe the datasets and experimental configuration used to val-
idate our proposed method for handling noisy constraints. We conduct four experi-
ments to show its effectiveness, which are applied to synthetic benchmark networks
of different sizes with overlapping communities, and real-world networks. Our ob-
jectives are as follows: (1) to quantify the ability of each constraint cleaning process
to detect noisy constraints prior to community finding; (2) to choose the best archi-
tectures of autoencoder to use as a deep embedding function for outlier detection
models; (3) to compare all types of constraint cleaning processes after integration
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Algorithm 1: AC-SLPA with Pairwise Constraint Cleaning Process
Input : A network G
Output: Set of communities
Initialization: Apply unsupervised SLPA to generate set of initial communities

First Stage: Detecting noises in constraints during selection and annotation

while budget available do
Phase 1: Apply node pair selection method
Input(Set of communities)

Model selects the best pairs to query
Output(List of important pairs to be labeled)
Phase 2: Generate pairwise constraints (PC)
Input(List of important pairs to be labeled)

Request pairwise constraints from noisy oracle
Output(noisy pairwise constraints (PC-))
(PC-) = (PC-) + (Total PC+)
Phase 3: Identifying noisy constraints process
Input(noisy pairwise constraints (PC-))

Detect potentially noisy pairwise constraints
Output(cleaned pairwise constraints (PC+))
(Total PC+) = (Total PC+) + (PC+)
Phase 4: Apply PC-SLPA algorithm
Input(Total pairwise constraints (Total PC+) )

Running PC-SLPA algorithm
Output(Set of communities)

end

Second Stage: Rechecking discarded pairwise constraints

Start constraints cleaning process
Input(Discarded pairwise constraints (PC-))

Identify potentially noisy pairwise constraints
Output(clean pairwise constraints (PC+))
(Total PC+) = (Total PC+) + (PC+)

Third Stage: Apply community detection with cleaned constraints

Apply PC-SLPA algorithm
Input(Total clean pairwise constraints (Total PC+))

Apply PC-SLPA algorithm
Output(Final set of communities)

with AC-SLPA, in order to evaluate the end-to-end performance of the complete
architecture; (4) to examine the performance of the method on real-world data.

4.1 Datasets

Synthetic data. We constructed a diverse set of 64 benchmark synthetic net-
works using the widely-used LFR generator [32]. These networks vary in terms



Overlapping Community Finding with Noisy Pairwise Constraints 15

Table 1: Parameter ranges used for the generation of LFR synthetic networks.
Parameter Description Value Parameter Description Value

N Number of nodes 1000-5000 t1 Degree exponent 2
k Average degree 10 t2 Community exponent 1

Kmax Max degree 50 µ Mixing parameter 0.1-0.3
Cmin Min community size 10/20 On Num. overlapping nodes 10%/50%
Cmax Max community size 50/100 Om Communities per node 1-8

Table 2: Details of real-world networks.
Real-world Networks Amazon YouTube DBLP
#Nodes - # Edges - #Communities 7411 - 21214 - 876 6426 - 23226 - 1058 7233 - 33045 - 613
Average degree 5 7 9
Maximum community size 27 31 38
Minimum community size 5 5 10
Average community size 10 7 12
Maximum communities per node (Om) 4 11 5
Number of overlapping nodes (On) 1394 (18%) 865 (13%) 214 (3.3%)
Clustering coefficient 0.74 0.33 0.90

of number of nodes N ∈ [1000,5000], communities per node (overlapping diversity)
Om ∈ [2,8], and the fraction of nodes belonging to multiple communities (overlap-
ping density) On ∈ {10%,50%}. These networks contain either small communities
(10− 50 nodes), or large communities (20− 100 nodes). The mixing parameter µ

varies from 0.1 to 0.3, which controls the level of community overlap. Details of the
network generation parameters are in Table 1.

Real-world data. We use three real-world networks which contain annotated ground
truth overlapping communities. These are: (1) a co-purchasing network from Ama-
zon.com; (2) a friendship network from YouTube; (3) a scientific collaboration net-
work from DBLP. These networks have previously been used in the community
finding literature [35]. For each network, we include only the 5,000 largest commu-
nities, as performed in [54]. We then conduct a filtering process as per [25]. The
remaining communities are ranked based on their internal densities and the bottom
quartile is discarded, along with any duplicate communities. As an additional step,
we remove extremely small communities. For the Amazon and YouTube networks,
communities of size < 5 nodes are discarded, while for the DBLP network commu-
nities with < 10 nodes are discarded. Details of the final networks are summarized
in Table 2.

Constraint noise. In all of our experiments we mimic the presence of an oracle
by using the information from pairwise assignments between nodes in ground truth
communities for each network based on the definition of pairwise constraints in sec-
tion 3.1. We subsequently add noise to constraints by randomly flipping the labels
of a subset of must-link and cannot-link pairs. The level of noise is fixed at 10% of
the smallest constraint set, either must-link or cannot-link.

Evaluation metrics. To compare the ability of autoencoders of different techniques
to detect noisy constraints before their use in community finding, we calculate the
AUC (Area Under the ROC Curve) over the reconstruction error. This provides an
estimate of the number of constraints that were successfully detected in the absence
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of a threshold. After integrating into the community finding process, performance
is assessed using the overlapping form of Normalized Mutual Information (NMI)
[31]. For this measure, a value close to 1 indicates a high level of agreement with the
ground truth communities, while a value close to 0 indicates that the communities
generated by an algorithm are no better than random.

Several validation metrics have been proposed to capture the topological proper-
ties of a network. These are then used to assess the quality of a set of communities
when no ground truth is available. One of the most commonly used metrics for
evaluating disjoint communities is the modularity quality function [43]. A corre-
sponding overlapping modularity quality function was proposed by [33]. Different
variations of standard modularity have been proposed to address its limitations. [14]
presents a comprehensive review of these variations, together with other quality met-
rics which can be used to evaluate communities. Some studies have suggested using
metrics to measure the topological features of communities generated by an algo-
rithm, and then comparing the outputs to the ground truth communities in the net-
work [44, 14]. This can be seen as a complementary evaluation to the more widely-
adopted external metrics described previously. These metrics include community
size distribution, numbers of detected communities, average distance between all
pairs of nodes within a community, the scaled density of a community (i.e., the
product of its density and its size), and various other approaches. [27] proposed an
evaluation framework that uses topological features for assessing the performance
of community finding algorithms. This framework compares the outputs of differ-
ent algorithms based on a decision-making process that takes into account multiple
topological criteria.

4.2 Experiment 1: Comparing Outlier Detection Models

In this experiment, the objective is to find the best models for detecting noisy con-
straints in must-link and cannot-link sets in Phase 2 (identifying noisy constraints)
of the proposed general architecture in Fig 1. As described in Section 3.3, there are
four categories of cleaning processes that can be used in Phase 2. This experiment
is designed to find the best model for each category. There are three main aspects of
this experiment:

1. In Section 4.2.1 we seek to find the best autoencoder architectures as outlier de-
tection models for must-link and cannot-link constraints separately. These will
be used to investigate the deep learning approach as a cleaning processes in Ex-
periment 2, Section 4.3

2. Also in Section 4.2.1 we identify the best performing conventional outlier detec-
tion method (from Isolation forest, One-class SVM, and local outlier factor) for
must-link and cannot-link constraints. This outcome will also be used in Experi-
ment 2, Section 4.3.
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3. In Section 4.2.2 we explore different autoencoder architectures as deep embed-
ding technique integrated with conventional outlier detection models for each
must-link and cannot-link constraints.

This experiment is designed to assess the performance of Phase 2 detached from the
general architecture in Fig 1. Specifically, constraints are selected over 10 indepen-
dent iterations of the existing AC-SLPA algorithm and then split into must-link and
cannot-link sets to be processed separately.

4.2.1 Evaluating Outlier Detection Methods

Methodology. This experiment compares two different strategies for cleaning con-
straint sets, evaluated on the synthetic LFR networks described previously in Section
4.1. This experiment proceeds in the following steps:

1. We consider autoencoder models for constraint cleaning. For each selected set at
each iteration, a separate autoencoder is trained on this set until the reconstruction
error reaches a near-zero value (functionally a maximum number of epochs is
selected). The set is then passed through the autoencoder once again in order
to obtain a reconstruction for each constraint. The reconstruction error is then
calculated for each constraint. The number of layers in each autoencoder model
is also varied in order to examine whether this task benefits from a deeper model.
Both compression-based autoencoders and sparse autoencoders are considered
for this. In the case of the compression autoencoders, the nodes in the encoder
are gradually decreased until the bottleneck layer is reached and then gradually
increased in the decoder. For the L1 constrained autoencoders, compression in
the encoder is not necessary, and therefore the dimensionality is kept the same
as the input throughout the network. In the case of the constrained autoencoders,
the sparsity weight is kept at 10−3. All models were trained with a batch size of
256. The full list of parameter combinations used in our experiments is given in
Table 3. In the remainder of this paper we denote these autoencoder architectures
with the prefix AE*.

2. As baseline alternatives, we consider traditional outlier detection methods for
this task: Isolation Forest (IF) [40], One-class SVM [47], and local outlier factor
[11]. We conduct experiments in the same way as for the autoencoders described
above. For each selected set at each iteration, a separate model is fit on this set,
which then returns a binary score for each constraint that determines whether
or not it is a noisy constraint. After removing noisy constraints, the same set is
then passed through the model once again in order to obtain a re-calculated score
for each constraint. We use the code released by scikit-learn, with the default
parameter settings, including the contamination parameter at 10%.

Results. Table 5 and Table 4 present the results for the two alternative strategies (au-
toencoders and standard outlier detection methods). Each table is divided into two
parts that represent the average AUC scores of each model on small and large net-
works respectively. Results for must-link and cannot-link constraint sets are listed
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separately. Each table entry shows the average AUC score of the model (on the rows)
for networks with certain size, overlapping density and the type of constraints used
(on the columns). The highest average AUC score is highlighted in bold.

In terms of the autoencoder models, for both small and large network the most
constrained AE models tend to perform better than the unconstrained ones when
detecting noises on must-link constraints, as illustrated in Table 5. For instance on
small networks, the average AUC score of AE2 is 0.625 and increases to 0.657 with
the constrained version AE2 l1. Similarly, on large networks, AE2 l1 show a higher
average score than AE2, with AUC=0.470 and AUC=0.442 respectively. In con-
trast, we see the opposite trend for cannot-link constraints, where constrained mod-
els show lower average scores than unconstrained ones, except for AE3 l1 which
presents consistently higher score compared to AE3 in all cases.

When comparing shallow to deep models on small and large networks, the gen-
eral trend of AUC scores on must-link constraints shows a decrease as more layers
are added to AE models, except for AE2 l1 on large networks. On the other hand,
we can see a contrasting trend on cannot-link constraints, where the highest AUC
scores on all networks are achieved by the deep model AE3 l1.

Interestingly, for both types of constraint, the AE models tend to perform sig-
nificantly better on networks with low overlapping density. For instance, the av-
erage AUC scores for AE models is 0.694 for must-link constraints and 0.826
for cannot-link constraints on small networks with On = 10%, which are higher
than AUC=0.590 and AUC=0.743 on On = 50% for must-link and cannot-link con-
straints respectively. However, this excludes the results of AE models on must-link
constraints for large networks, which show slightly higher scores.

Table 3: Details of autoencoder architectures. Here AE* indicates the number of layers in compres-
sion autoencoders, and AE* L1 indicates the number of layers in L1-constrained autoencoders.

Architecture Nodes per Layer Small Networks Large Networks
Epochs Learning rate Epochs Learning Rate

AE1 dim:(7,3,7) 100 0.01 30 0.001
AE1 L1 dim:(7,7,7) 100 0.01 30 0.001
AE2 dim:(7,5,3,5,7) 100 0.01 30 0.001
AE2 L1 dim:(7,7,7,7,7) 100 0.01 30 0.001
AE3 dim:(7,6,5,3,5,6,7) 100 0.01 30 0.001
AE3 L1 dim:(7,7,7,7,7,7,7) 100 0.01 30 0.001

Table 4: Average AUC scores for Isolation Forest (IF), One-class SVM, and Local Outlier Factor
(LOF) on LFR networks. We report overall scores, and scores on networks with differing overlap
density On, for must-link and cannot-link sets separately.

Outlier Methods
Small Networks Large Networks

Must-link constraints Cannot-link constraints Must-link constraints Cannot-link constraints
Overall On = 10% On = 50% Overall On = 10% On = 50% Overall On = 10% On = 50% Overall On = 10% On = 50%

IF 0.623 0.720 0.526 0.868 0.915 0.820 0.213 0.163 0.262 0.932 0.968 0.896
SVM 0.691 0.751 0.631 0.765 0.827 0.702 0.554 0.572 0.536 0.886 0.917 0.854
LOF 0.621 0.711 0.532 0.670 0.699 0.641 0.480 0.478 0.482 0.596 0.628 0.564
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Table 5: Average AUC scores for different autoencoder architectures. We report overall scores, and
scores on networks with differing overlap density On, for must-link and cannot-link sets separately.

Architecture
Small Networks Large Networks

Must-link constraints Cannot-link constraints Must-link constraints Cannot-link constraints
Overall On = 10% On = 50% Overall On = 10% On = 50% Overall On=10% On = 50% Overall On = 10% On = 50%

AE1 0.634 0.651 0.616 0.779 0.820 0.739 0.456 0.452 0.460 0.844 0.906 0.782
AE2 0.625 0.652 0.597 0.785 0.828 0.742 0.442 0.443 0.442 0.849 0.906 0.791
AE3 0.624 0.667 0.580 0.796 0.843 0.748 0.422 0.416 0.429 0.849 0.905 0.794
AE1 l 0.659 0.705 0.614 0.737 0.777 0.697 0.453 0.445 0.461 0.789 0.842 0.735
AE2 l 0.657 0.718 0.597 0.776 0.812 0.739 0.470 0.444 0.496 0.780 0.847 0.714
AE3 l 0.654 0.773 0.534 0.835 0.877 0.793 0.424 0.407 0.440 0.879 0.919 0.839
All AE 0.642 0.694 0.590 0.785 0.826 0.743 0.444 0.434 0.45 0.832 0.887 0.775

Table 6 summarizes the average ranks of all AE models on must-link and cannot-
link constraints separately for small networks and large networks. Each table entry
shows the average rank (lower values are better) of a model (on the rows) over each
constraint type and networks size (on the columns). The ranking scores indicate
that, for must-link constraints, the best approaches for detecting noise are the shal-
low model AE1 l1 on small networks, and the constrained model with moderate
depth AE2 l1 on large networks. For cannot-link constraints, the deep constrained
model AE3 l1 is the top-ranked model on both small and large networks. Generally,
A deeper AE model leads to a greater representational capacity [21]. Though it is
difficult to know the reason for one architecture outperforming another with a high
degree of certainty, the increased number of data points for must-link constraints in
the large network most likely requires the network to have an increased representa-
tional capacity.

Table 6: Average rank of autoencoder architectures over all small and large LFR networks, for
must-link and cannot-link constraints.

Small Networks Large Networks

Architecture
Must-link
constraints

Cannot-link
constraints

Must-link
constraints

Cannot-link
constraints

AE1 3.0 4.5 2.5 4.0
AE1 L1 1.0 6.0 2.5 5.0
AE2 5.0 3.0 4.0 2.0
AE2 L1 2.0 4.5 1.0 6.0
AE3 6.0 2.0 6.0 3.0
AE3 L1 4.0 1.0 5.0 1.0

We turn now to the results for the traditional outlier detection methods, which are
listed in Table 4. As can be seen for both small and large network, the SVM model
achieves the highest scores on must-link constraints, while the IF model shows the
best performance on cannot-link constraints. Generally, most models performed bet-
ter in detecting noisy must-link constraints in small networks compared to large
networks. However, the opposite trend is seen for cannot-link constraints, where we
observe considerably higher scores on larger networks, except in the case of LOF
model. Another trend that can be seen in Table 4 is significantly higher scores on
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Table 7: Average ranks of Isolation Forest (IF), One-class SVM, and Local Outlier Factor (LOF)
over all small and large LFR networks, for must-link and cannot-link constraints.

Dataset Must-link constraints Cannot-link constraints

Small Networks IF SVM LOF IF SVM LOF
2.3(2) 1.3(1) 2.4(3) 1.0(1) 2.0(2) 3.0(3)

Large Networks IF SVM LOF IF SVM LOF
3.0(3) 1.1(1) 1.9(2) 1.0(1) 2.0(2) 3.0(3)

Average Rank 2.5 1 2.5 1 2 3

Table 8: Average ranks for autoencoder architectures when used as deep embeddings wit one-class
SVM (on must-link constraints) and for Isolation Forest (on cannot-link constraints).

Small Networks Large Networks
Architecture Encoder + SVM Encoder + IF Encoder + SVM Encoder + IF
AE1 3 2 2 3
AE1 L1 4 4 4 4
AE2 2 3 1 2
AE2 L1 5.5 5.5 5.5 5.5
AE3 1 1 3 1
AE3 L1 5.5 5.5 5.5 5.5

networks with On = 10% compared to networks with On = 50% by most models,
except for the IF and LOF models on must-link constraints in large networks. In
summary, these results suggest that SVM and IF are the best performing models on
must-link constraints and cannot-link constraints respectively across all networks.
This can also be seen in Table 7, which reports the average ranking scores for the
three alternative outlier detection models.

4.2.2 Evaluating Autoencoders for Deep Embeddings

Methodology. In this section we address the objective of finding the best autoen-
coder architectures for use as a deep embedding technique in combination with other
outlier detection methods. The best candidates will be used later in Experiment 2 in
section 4.3. Specifically, we assess the performance of different autoencoder archi-
tectures with One-Class SVM and Isolation Forest (IF) models, which were the best
performed conventional outlier detection models on must-link and cannot-link con-
straints respectively as described previously.

Results. Table 8 reports the average ranks achieved by different autoencoders (on
the rows) in conjunction with the SVM and IF methods for detecting noise in must-
link and cannot-link sets (on the columns). As can be seen from the results, uncon-
strained AE models outperform constrained ones as deep embedding technique in
all cases. In particular, the deep unconstrained models AE3 shows the best scores,
except for the case of SVMs on large networks, where the unconstrained model with
moderate depth AE2 is the top-ranked model.
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4.3 Experiment 2: Evaluation of Noise Removal Methods

Table 9: Different variations of the cleaning process using the best performing models from the
Experiment 1, on must-link and cannot-link constraints respectively.

Small Networks
Cleaning Models Must-link constraints Cannot-link constraints
Hybrid (Autoencoder - Encoder Func.+IF) AE1 L1 AE3+IF
Autoencoders(AE) AE1 L1 AE3 L1
Encoder Func. + Outlier detection (SVM-IF) AE3+SVM AE3+IF
Outlier detection only (SVM-IF) SVM IF

Large Networks
Cleaning Models Must-link constraints Cannot-link constraints
Hybrid (Autoencoder - Encoder Func.+IF) AE2 L1 AE3+IF
Autoencoders(AE) AE2 L1 AE3 L1
Encoder Func. + Outlier detection (SVM-IF) AE2+SVM AE3+IF
Outlier detection only (SVM-IF) SVM IF

Methodology. In the previous experiment, we focused on Phase 2 in Fig 1 as a
separate component. Now we evaluate the performance of the proposed architec-
ture incorporating Phase 2. Given the best-performing outlier detection models and
deep embedding functions identified in Experiment 1, we assess the performance
of AC-SLPA community finding using each category of constraint cleaning process
described in Section 3.3 to identify the best option. Table 9 summarize the types of
cleaning processes and models that are used in this experiment. Again we make use
of 64 synthetic LFR networks.

Results. Table 10 and Table 11 provide an overview of how the performance of AC-
SLPA with various cleaning methods changes on synthetic networks. Recall that
these networks vary in terms of mixing parameter µ , overlapping diversity Om, over-
lapping density On, and the size of both the networks themselves and their ground
truth communities. Each table entry includes the average NMI score of AC-SLPA
combined with each cleaning methods (on the rows) over networks with specific
parameters (on the columns). The best score is highlighted in bold. The detailed
NMI scores are shown in Fig 8 and Fig 9, which indicate the agreement between the
obtained communities in each case and the corresponding ground truth.

Generally, increasing the value of µ results in lower NMI scores for all al-
gorithms, due to the increased proportion of inter-community edges that lead to
weakly-defined community structure. As can be seen from Table 10 and Table 11,
compared to the case of µ=0.1, the average NMI scores of all algorithms consider-
ably decreased on small networks with µ=0.3. In both cases of µ , we can see that
AC-SLPA with the Hybrid method outperformed other methods on small and large
networks. As for examining the performance on networks with small and large com-
munities, we can see that all algorithms show higher average NMI scores for small
community networks compared to large community networks. In addition, we notice
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that AC-SLPA with the hybrid method shows the best performance on all networks,
except for large networks with large communities.

Now we investigate the effect of two network properties, overlapping diversity
Om and overlapping density On, on the performance of all algorithms. As we can
see from Table 10 and Table 11, the quality of obtained communities of all algo-
rithms consistently decreases as the overlapping diversity and overlapping density
increase. In most of the cases of Om and On, AC-SLPA with the Hybrid method
outperform other methods except cases on On = 10% and Om = 4 shows the sec-
ond best scores after SVM IF. Overall, in most cases of network parameters, the
algorithms show higher average NMI scores on large networks compared to small
networks, excluding AC-SLPA with AE method which shows a contrasting trend.

Table 10: Average NMI scores of AC-SLPA achieved using different cleaning processes on small
synthetic networks with different network parameters.

Cleaning
Process

Network Parameters
µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8
Hybrid 0.565 0.483 0.538 0.51 0.810 0.239 0.710 0.538 0.448 0.401
AE 0.506 0.440 0.497 0.449 0.728 0.218 0.631 0.485 0.416 0.361
AE SVM IF 0.553 0.463 0.525 0.49 0.800 0.215 0.701 0.522 0.432 0.376
SVM IF 0.547 0.458 0.522 0.483 0.797 0.208 0.701 0.517 0.424 0.369

Table 11: Average NMI scores of AC-SLPA achieved using different cleaning processes on large
synthetic networks with different network parameters.

Cleaning
Process

Network Parameters
µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8
Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AE 0.474 0.426 0.464 0.435 0.618 0.281 0.6 0.453 0.39 0.357
AE SVM IF 0.544 0.503 0.539 0.508 0.757 0.290 0.726 0.559 0.44 0.369
SVM IF 0.559 0.527 0.543 0.543 0.785 0.301 0.748 0.572 0.464 0.388

Table 12 summarizes the average ranks based on NMI scores for all algorithms
on the synthetic networks. Each table entry shows the average rank of AC-SLPA
with a cleaning method (on the columns) for different sizes of synthetic networks
(on the rows). The average ranks based on NMI scores for each individual network
is shown in Fig 8 and Fig 9. As we can see, AC-SLPA with the Hybrid method
achieved the best rank on both small and large networks. The second-best algorithms
with AE SVM IF method on small networks and with SVM IF method on large
networks. AE SVM IF and SVM IF show approximately comparable performance
on small networks, however the difference in performance between both methods
grows higher on large networks.
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Table 12: Average ranks of NMI scores for AC-SLPA achieved using different cleaning methods
on small and large synthetic networks.

Network category Hybrid AE AE SVM IF SVM IF
Small networks 1.6(1) 3.2(4) 2.6(2) 2.7(3)
Large networks 1.6(1) 3.8(4) 2.7(3) 2.0(2)

To further understand the performance differences, we perform a Friedman
aligned rank test with the Finner p-value correction [20] to compare the above meth-
ods. The critical difference plots with a significance value α = 0.05 of the test results
are shown in Fig. 7, where the vertical lines indicate the corresponding algorithm’s
rank. The algorithms which are not connected with the black horizontal line are sig-
nificantly different with the mentioned significance level. In the case of the small
synthetic networks, the Hybrid method was found to be significantly better than the
other three methods. On the other hand, for big networks, this method was found to
be significantly better than AE SVM IF and AE.

1 2 3 4

                  Hybrid

AE_SVM_IF

SVM_IF

AE

(a) Small synthetic network

1 2 3 4

                 Hybrid

SVM_IF

AE_SVM_IF

AE

(b) Big synthetic network

Fig. 7: Critical difference plots from Friedman aligned rank test with Finner p-value correction
with significance level α = 0.05 comparing Hybrid, AE˙SVM˙IF, SVM˙IF and AE algorithms on
the small and big synthetic networks. Algorithms which are not connected with the horizontal dark
line are significantly different than each other. Lower rank indicates an overall better performance.
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Fig. 8: Performance of AC-SLPA using different constraint cleaning methods on small synthetic
networks, containing both small and large communities, where the mixing parameter µ varies from
0.1 to 0.3. NMI values are plotted against the number of communities per node (Om).
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Fig. 9: Performance of AC-SLPA using different constraint cleaning methods on large synthetic
networks, containing both small and large communities, where the mixing parameter µ varies from
0.1 to 0.3. NMI values are plotted against the number of communities per node (Om).
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4.4 Experiment 3: End-to-End Evaluation

Methodology. In the previous section, we compared different cleaning methods as
they were integrated into the overall architecture as can be seen in Fig 1. The best
performing cleaning process identified was the Hybrid method. We term this overall
architecture AC-SLPA with Hybrid cleaning. In the following sections, we com-
pare this architecture to the baseline algorithms, SLPA and AC-SLPA, without any
constraint cleaning on both small and large synthetic networks.

Results. We assess the quality of the obtained communities by AC-SLPA with hy-
brid (top-ranked cleaning process) compared to AC-SLPA and SLPA from the per-
spective of different network parameters as illustrated in Table 13 and Table 14. The
NMI scores of each network are reported in Fig 11 and Fig 12 on small and large
networks respectively.

As can be seen from the Table 13 and Table 14, AC-SLPA with Hybrid cleaning
significantly outperformed other algorithms in most cases of networks parameters.
For instance, in high mixing parameters large networks, AC-SLPA with the Hybrid
method shows significantly higher score with NMI=0.530 compared to AC-SLPA
and SLPA with NMI=0.343 and NMI=0.451 respectively. Similarly, AC-SLPA with
the Hybrid method beats the other algorithms in most overlapping density (On) and
overlapping diversity (Om) cases, except on large networks with low overlapping
density. SLPA shows slightly better average NMI score than AC-SLPA with clean-
ing process, with NMI=0.777 and NMI=0.768 respectively. In addition, we notice
that the AC-SLPA with hybrid cleaning and SLPA show higher average NMI scores
on large networks compared to small networks.

Table 13: Average NMI scores of AC-SLPA using Hybrid cleaning method compared to SLPA
and AC-SLPA with noisy pairwise constraints on small synthetic networks with different network
parameters.

Algorithm
Network Parameters

µ Comm. Size On Om
0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.565 0.483 0.538 0.510 0.809 0.239 0.709 0.538 0.448 0.401
AC-SLPA 0.484 0.43 0.475 0.438 0.691 0.223 0.602 0.472 0.402 0.351
SLPA 0.527 0.388 0.474 0.441 0.737 0.178 0.634 0.458 0.396 0.342

Table 14: Average NMI scores of AC-SLPA using the hybrid cleaning process, SLPA and AC-
SLPA with noisy pairwise constraints on large synthetic networks with different network parame-
ters..

Algorithm
Network Parameters

µ Comm. Size On Om
0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AC-SLPA 0.316 0.343 0.364 0.295 0.429 0.231 0.390 0.353 0.301 0.357
SLPA 0.533 0.451 0.497 0.488 0.777 0.208 0.686 0.484 0.421 0.369
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On the small networks, the performance of AC-SLPA without any cleaning pro-
cess shows slightly better performance than SLPA in most cases. By contrast, the
performance of AC-SLPA is significantly affected by noisy pairwise constraints on
large networks, the average NMI scores consistently drop compared to SLPA. Over-
all, the best NMI scores of all algorithms are shown on low overlapping density, and
significantly drop on high overlapping density. For instance, we can see from Fig 11
and Fig 12 that the Hybrid method shows high NMI scores on most networks with
low overlapping density compared to other algorithms, and the scores drop in high
overlapping density case, in particular on small network. On large networks, the
performance the Hybrid method considerably higher and more stable as the over-
lapping diversity increases compared to AC-SLPA and SLPA. Table 15 lists the
average ranks of NMI scores of all algorithms on small and large networks, which
shows the average ranks (lower values are better) of an algorithm (on the columns)
over different size of synthetic networks (on the rows). The best scores are shown
in boldface. As can be seen in Table 15, AC-SLPA with Hybrid cleaning method
achieved the best rank score on both small and large networks, while the second
best is SLPA on small networks and AC-SLPA on large networks.

Table 15: Average ranks of NMI scores of AC-SLPA using the hybrid cleaning process, SLPA and
AC-SLPA with noisy pairwise constraints on small and large synthetic networks.

Network category SLPA AC-SLPA Hybrid
Small networks 2.2(2) 2.5(3) 1.3(1)
Large networks 2.6(3) 2.1(2) 1.3(1)

As in Section 4.3, we perform a Friedman aligned rank test with the Finner p-
value correction to perform a multiple comparison tests between the above three
methods. The critical difference plots of the results with a significance level of α =
0.05 is shown in Fig. 10. In the case of both the small and big networks, the AC-
SLPA Hybrid method performed significantly better than the other two methods.

1 2 3

���������	
��

ACSLAP

SLAPSLPA

AC-SLPA

(a) Small synthetic network

1 2 3

���������	
��

SLAP

ACSLAPACSLPA  

SLPA  

AC-SLPA

(b) Big synthetic network

Fig. 10: Critical difference plots from Friedman aligned rank test with Finner p-value correction
with significance level α = 0.05 comparing Hybrid (the best performing variant from the previous
experiment), SLPA and ACSLAP algorithms on the small and big synthetic networks. Algorithms
which are not connected with the horizontal dark line are significantly different than each other.
Lower rank indicates an overall better performance.
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Fig. 11: Performance of AC-SLPA using the hybrid cleaning process compared to SLPA and AC-
SLPA with noisy pairwise constraints on small synthetic networks, containing both small and large
communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against
the number of communities per node (Om).
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Fig. 12: Performance of AC-SLPA using Hybrid cleaning method compared to SLPA and AC-
SLPA with noisy pairwise constraints on large synthetic networks, containing both small and large
communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against
the number of communities per node (Om).
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4.5 Experiment 4: Real-world Networks

Methodology. In this section we discuss our final experiment on three larger real-
world networks (Amazon, YouTube, DBLP). We conduct the same experiments em-
ployed in Section 4.3 and Section 4.4 to examine the performance of each cleaning
method after integration into AC-SLPA. Note that we employ the same models used
with large synthetic networks, see Table 9. As baselines we consider AC-SLPA with-
out cleaning (i.e. keeping noisy constraints), and the purely unsupervised algorithm
SLPA. We also compare AC-SLPA with the best cleaning method to other base-
line algorithms which are OSLOM [30], MOSES [42], COPPRA[1] on real-world
networks in Table 17.

Results. Table 16 lists the NMI scores for each algorithm (on the columns) on
each network (on the rows). The last row reports the average rank score of each
algorithm. When comparing the performance of AC-SLPA with different cleaning
methods to the baseline algorithms, we can see AC-SLPA with the Hybrid method
achieves the best NMI scores on YouTube and DBLP networks (with NMI=0.818
and NMI=0.921 respectively). On the YouTube network, the performance of the AC-
SLPA with Hybrid cleaning method increases significantly with a small amount of
supervision. The next best performer is the AC-SLPA with AE method, followed by
SLPA and AC-SLPA with noisy pairwise constraints. Overall, all algorithms achieve
their highest NMI scores on the YouTube dataset.

Table 16: Average NMI scores of AC-SLPA using different cleaning methods (Hybrid, AE,
AE SVM IF, and SVM IF), SLPA and AC-SLPA with noisy pairwise constraints on three real-
world networks. Average ranks across the networks are also reported.

Network SLPA AC-SLPA AC-SLPA Hybrid AC-SLPA AE AC-SLPA AE SVM IF AC-SLPA SVM IF
Amazon 0.957 0.956 0.956 0.952 0.951 0.955
YouTube 0.627 0.778 0.818 0.778 0.751 0.751
DBLP 0.897 0.892 0.921 0.906 0.889 0.893
Avg. Ranks 3.3 3.7 1.3 3.0 5.3 4.3

However, the cleaning methods fail to lead to any improvement over the baselines
in the case of the Amazon network. After investigating these results in more detail,
we notice two behaviors which frequently occur: (1) Far more must-link constraints
than cannot-link constraints are selected by AC-SLPA. For example, the number
of must-link constraints often exceed 2,000 pairs, while the selected cannot-link
constraint set can contain fewer than 100 pairs; (2) All of the noisy constraints are in
the cannot-link set, and the number of incorrectly-labelled pairs exceeds the number
of correctly-labelled pairs. This situation renders noisy detection almost impossible
for most outlier detection methods.

Now, We compare the performance of AC-SLPA with the Hybrid method to the
other baseline algorithms beside SLPA (OSLOM [30], MOSES [42], COPPRA[1])
on real-world networks in Table 17. We can see that OSLOM achieves the highest
NMI scores on the Amazon networks, however AC-SLPA with the Hybrid shows
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the best NMI score compared to other baseline algorithms on YouTube and DBLP
networks. Table 17 also report the average ranks of NMI scores of all algorithms on
real-world networks, which shows the average ranks (lower values are better) of an
algorithm (on the columns) over networks (on the rows). The best score are shown
in boldface. As can be seen AC-SLPA with Hybrid cleaning method achieved the
best rank score, while the second best is SLPA and OSLOM.

Table 17: Average NMI scores of AC-SLPA using Hybrid cleaning methods compared to other
baseline methods (SLPA, OSLOM, MOSES, COPRA) on three real-world networks. Average
ranks across the networks are also reported.

Network AC-SLPA Hybrid SLPA OSLOM MOSES COPRA
Amazon 0.956 0.957 0.967 0.908 0.962
YouTube 0.818 0.627 0.449 0.421 0.191
DBLP 0.921 0.897 0.849 0.771 0.914
Avg. Ranks 2.0(1) 2.7(2.5) 2.7(2.5) 4.7(5) 3.0(4)

Finally, we illustrate some of the obtained communities’ topological properties
from the algorithms ACSLPA Hybrid, ACSLPA with and without noisy constraints,
and SLPA. These topological properties include the community size distribution and
the number of communities (Fig. 13, Fig. 14, and Fig. 15). We show the commu-
nity size distribution of the resulted communities from each algorithm against the
ground truth communities for each real-world network. Since all of these algorithms
are randomized, out of 10 runs, we pick up the one with the best NMI score to show
it’s topological properties. To compare each algorithm’s community size distribu-
tion to the community size distribution of the ground truth communities (reference
distribution), we use the two-sample Kolmogorov-Smirnov test (KS). KS is a non-
parametric statistic test to compare two cumulative distributions of two datasets,
which reports the maximum difference between them (statistic(distance)) and com-
putes the P-value based on this maximum distance and the sample sizes. The null
hypothesis is that both distributions are identical. The null hypothesis is rejected
when the P-value is small (<0.05), and the distance value is high. Table 18 reports
the KS results of all the algorithms on the real-world networks.

As can be seen, the p-values for all forms of ACSLPA algorithms on Amazon
networks indicate their distributions are the same as the reference distribution, un-
like SLPA. In term of the distance values, we can see that the distribution of AC-
SLPA without noisy constraints is closest to the reference distribution. On Youtube
networks, we can see that according to the p-values, all algorithms’ distribution is
not the same as the reference distribution. However, looking at the distance val-
ues, again ACSLPA without noisy constraints has the lowest score. We can also see
that using Hybrid method with ACSLPA minimized the distance value significantly
(ACSLPA with noisy constraints with Distance=0.250, and ACSLPA Hybrid with
Distance=0.099). The same observation applied for DBLP network, except that the
p-value of ACSLPA without noisy constraints on this network is above 0.05. For
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more details about the number of communities, maximum, minimum, and average
size of communities for each algorithm, see Fig. 13, Fig. 14, and Fig. 15.

Table 18: Kolmogorov-Smirnov distance between the community size distribution of the obtained
results of SLPA, ACSLPA with and without noisy constraints, and ACSLPA˙Hybrid on real-world
networks against the community size distribution of the ground truth communities.

Networks SLPA ACSLPA with noisy const. ACSLPA Hybrid ACSLPA without noisy const.
Distance p-value Distance p-value Distance p-value Distance p-value

Amazon 0.076 0.016 0.059 0.113 0.050 0.252 0.033 0.772
YouTube 0.086 0.017 0.250 0.000 0.099 0.000 0.073 0.005
DBLP 0.222 0.000 0.222 0.000 0.141 0.000 0.032 0.899

(a) (b)

(c) (d)

Fig. 13: Community size distribution for communities obtained by SLPA, ACSLPA with noisy
pairwise constraints, and ACSLPA with Hybrid cleaning method on YouTube networks, all com-
pared to the Ground Truth communities.
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(a) (b)

(c) (d)

Fig. 14: Community size distribution for communities obtained by SLPA, ACSLPA with noisy
pairwise constraints, and ACSLPA with Hybrid cleaning method on Amazon networks, all com-
pared to the Ground Truth communities.

(a) (b)

(c) (d)

Fig. 15: Community size distribution for communities obtained by SLPA, ACSLPA with noisy
pairwise constraints, and ACSLPA with Hybrid cleaning method on DBLP networks, all compared
to the Ground Truth communities.
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5 Conclusion

In this study, we have addressed the problem of handling noisy constraints in over-
lapping semi-supervised community detection, by treating them as outliers and use
outlier detection models to find and remove them. Our primary contributions are
four-fold: 1) a general architecture for semi-supervised community finding with
noisy constraint filtering; 2) multiple designs of cleaning methodologies; 3) an in-
vestigation of outlier detection models for filtering, including deep learning models;
4) a comprehensive evaluation for each proposed cleaning methodology integrated
in the context of community detection. Based on the experimental results, we found
that the most effective approach was to employ a hybrid design of conventional and
deep learning-based outlier detection models, in conjunction with the AC-SLPA al-
gorithm. Using this approach makes the application of semi-supervised community
finding approaches to real-world network scenarios more feasible as real annotations
are always likely to be noisy which leads to poor performance when approaches that
assume they will be clean are used. As future work, we will aim to explore the use
of multiple noisy oracles (e.g a committee of human annotators), and how to resolve
the disagreements which might arise between them.
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